GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-21
    Description: In this study, we use a doubly stochastic model to develop a short-term eruption forecasting method based on precursory signals. The method enhances the Failure Forecast Method (FFM) equation, which represents the potential cascading of signals leading to failure. The reliability of such forecasts is affected by uncertainty in data and volcanic system behavior and, sometimes, a classical approach poorly predicts the time of failure. To address this, we introduce stochastic noise into the original ordinary differential equation, converting it into a stochastic differential equation, and systematically characterize the uncertainty. Embedding noise in the model can enable us to have greater forecasting skill by focusing on averages and moments. In our model, the prediction is thus perturbed inside a range that can be tuned, producing probabilistic forecasts. Furthermore, our doubly stochastic formulation is particularly powerful in that it provides a complete posterior probability distribution, allowing users to determine a worst-case scenario with a specified level of confidence. We verify the new method on simple historical datasets of precursory signals already studied with the classical FFM. The results show the increased forecasting skill of our doubly stochastic formulation. We then present a preliminary application of the method to more recent and complex monitoring signals.
    Description: Published
    Description: San Francisco (CA)
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Keywords: failure forecast method ; Campi Flegrei caldera
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-20
    Description: Sub-Task 2 del Task 2: "Realizzazione di un sistema di monitoraggio in tempo reale delle deformazioni del suolo dell'area vulcanica napoletana (Campi Flegrei, Vesuvio ed Ischia) tramite misure GNSS ad alta frequenza (HR-GNSS) e sviluppo di modelli statistici e numerici per la mappatura della probabilità eruttiva a breve termine della caldera dei Campi Flegrei"
    Description: Published
    Description: Workshop in videoconferenza 16-17 Dicembre 2020
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Keywords: Campi flegrei caldera ; failure forecast method
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-20
    Description: Episodes of slow uplift and subsidence of the ground, called bradyseism, characterize the recent dynamics of the Campi Flegrei caldera (Italy). In the last decades two major bradyseismic crises occurred, in 1969/1972 and in 1982/1984, with a ground uplift of 1.70 m and 1.85 m, respectively. Thousands of earthquakes, with a maximum magnitude of 4.2, caused the partial evacuation of the town of Pozzuoli in October 1983. This was followed by about 20 years of overall subsidence, about 1 m in total, until 2005. After 2005 the Campi Flegrei caldera has been rising again, with a slower rate, and a total maximum vertical displacement in the central area of ca. 70 cm. The two signals of ground deformation and background seismicity have been found to share similar accelerating trends. The failure forecast method can provide a first assessment of failure time on present‐day unrest signals at Campi Flegrei caldera (Italy) based on the monitoring data collected in [2011, 2020] and under the assumption to extrapolate such a trend into the future. In this study, we apply a probabilistic approach that enhances the well‐established method by incorporating stochastic perturbations in the linearized equations. The stochastic formulation enables the processing of decade‐long time windows of data, including the effects of variable dynamics that characterize the unrest. We provide temporal forecasts with uncertainty quantification, potentially indicative of eruption dates. The basis of the failure forecast method is a fundamental law for failing materials: ẇ^-α ẅ = A, where ẇ is the rate of the precursor signal, and α, A are model parameters that we fit on the data. The solution when α 〉1 is a power law of exponent 1/(1 − α) diverging at time Tf , called failure time. In our case study, Tf is the time when the accelerating signals collected at Campi Flegrei would diverge if we extrapolate their trend. The interpretation of Tf as the onset of a volcanic eruption is speculative. It is important to note that future variations of monitoring data could either slow down the increase so far observed, or suddenly further increase it leading to shorter failure times than those here reported. Data from observations at all locations in the region were also aggregated to reinforce the computations of Tf reducing the impact of observation errors.
    Description: Published
    Description: San Francisco (CA)
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Keywords: Campi flegrei caldera ; monitoring signals ; failure forecast method
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-10-21
    Description: We present two models using monitoring data in the production of volcanic eruption forecasts. The first model enhances the well-established failure forecast method introducing an SDE in its formulation. In particular, we developed new method for performing short-term eruption timing probability forecasts, when the eruption onset is well represented by a model of a significant rupture of materials. The method enhances the well-known failure forecast method equation. We allow random excursions from the classical solutions. This provides probabilistic forecasts instead of deterministic predictions, giving the user critical insight into a range of failure or eruption dates. Using the new method, we describe an assessment of failure time on present-day unrest signals at Campi Flegrei caldera (Italy) using either seismic count and ground deformation data. The new formulation enables the estimation on decade-long time windows of data, locally including the effects of variable dynamics. The second model establishes a simple method to update prior vent opening spatial maps. The prior reproduces the two-dimensional distribution of past vent distribution with a Gaussian Field. The likelihood relies on a one-dimensional variable characterizing the chance of material failure locally, based, for instance, on the horizontal ground deformation. In other terms, we introduce a new framework for performing short-term eruption spatial forecasts by assimilating monitoring signals into a prior (“background”) vent opening map. To describe the new approach, first we summarize the uncertainty affecting a vent opening map pdf of Campi Flegrei by defining an appropriate Gaussian random field that replicates it. Then we define a new interpolation method based on multiple points of central symmetry, and we apply it on discrete GPS data. Finally, we describe an application of the Bayes’ theorem that combines the prior vent opening map and the data-based likelihood product-wise. We provide examples based on either seismic count and interpolated ground deformation data collected in the Campi Flegrei volcanic area.
    Description: Published
    Description: San Francisco
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Keywords: failure forecast method ; Campi Flegrei caldera
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-10-03
    Description: Bearing in mind the destructive potential of tsunamis induced by volcanic landslides, the tsunamigenic event occurring at Stromboli volcano in Italy on 30 December 2002 has been reexamined here, by means of visible images and slope stability analysis. This was one of the few examples in the world of a flank collapse occurring at a volcano that was directly observed. We present the results of stability analyses, together with a sequence of photos collected from a helicopter a few minutes before the collapse. The result of this study is that the sequence of landslides triggering the 2002 Stromboli tsunami can be defined as the final stage of a lateral magma intrusion that exerted a high thrust at high altitude, destabilizing the entire slope. This study allows a more complete understanding of the event that took place on Stromboli on 30 December 2002. Furthermore, the approach used here, if appropriately modified, can be used in other contexts, contributing to the understanding of the condition that leads to tsunamigenic landslides
    Description: Open access funding provided by Istituto Nazionale di Geofisica e Vulcanologia within the CRUI-CARE Agreement. This research was funded by the “Presidenza del Consiglio dei Ministri–Dipartimento della Protezione Civile”, through the UniFi-DPC 2019–2021 agreement (Scientific Responsibility: N.C.). The contents of this paper represent the authors’ ideas and do not necessarily correspond to the official opinion and policies of the “Presidenza del Consiglio dei Ministri–Dipartimento della Protezione Civile”. This research was also funded by the Project FIRST-ForecastIng eRuptive activity at Stromboli volcano: Timing, eruptive style, size, intensity, and duration, INGV-Progetto Strategico Dipartimento Vulcani 2019 (Delibera n. 144/2020; Scientific Responsibility: S.C.). The SSAP software research and development was funded by CONACYT (Mexico): Proyectos Ciencia Basica: CB-2016/286764.
    Description: Published
    Description: 1363–1380
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Tsunamigenic landslides ; Stromboli volcano ; Aeolian Archipelago ; Limit equilibrium methods ; Slope stability analysis ; Volcano slope instability ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-12-27
    Description: In recent years, there has been a growing inter- est in ensemble approaches for modelling the atmospheric transport of volcanic aerosol, ash, and lapilli (tephra). The development of such techniques enables the exploration of novel methods for incorporating real observations into tephra dispersal models. However, traditional data assimilation al- gorithms, including ensemble Kalman filter (EnKF) meth- ods, can yield suboptimal state estimates for positive-definite variables such as those related to volcanic aerosols and tephra deposits. This study proposes two new ensemble- based data assimilation techniques for semi-positive-definite variables with highly skewed uncertainty distributions, in- cluding aerosol concentrations and tephra deposit mass load- ing: the Gaussian with non-negative constraints (GNC) and gamma inverse-gamma (GIG) methods. The proposed meth- ods are applied to reconstruct the tephra fallout deposit re- sulting from the 2015 Calbuco eruption using an ensemble of 256 runs performed with the FALL3D dispersal model. An assessment of the methodologies is conducted consider- ing two independent datasets of deposit thickness measure- ments: an assimilation dataset and a validation dataset. Dif- ferent evaluation metrics (e.g. RMSE, MBE, and SMAPE) are computed for the validation dataset, and the results are compared to two references: the ensemble prior mean and the EnKF analysis. Results show that the assimilation leads to a significant improvement over the first-guess results ob- tained from the simple ensemble forecast. The evidence from this study suggests that the GNC method was the most skilful approach and represents a promising alternative for assimila- tion of volcanic fallout data. The spatial distributions of the tephra fallout deposit thickness and volume according to the GNC analysis are in good agreement with estimations based on field measurements and isopach maps reported in previ- ous studies. On the other hand, although it is an interesting approach, the GIG method failed to improve the EnKF analysis.
    Description: EU
    Description: Published
    Description: 3459–3478
    Description: OSV3: Sviluppo di nuovi sistemi osservazionali e di analisi ad alta sensibilità
    Description: JCR Journal
    Keywords: Data Assimilation ; Tephra deposits ; 05.05. Mathematical geophysics ; 01.01. Atmosphere ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...