GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-09-16
    Description: Between 28 March and 1 April 2020, Stromboli volcano erupted, with overflows from the NE crater rim spreading along the barren Sciara del Fuoco slope and reaching the sea along the NW coast of the island. Poor weather conditions did not allow a detailed observation of the crater zone through the cameras monitoring network, but a clear view of the lower slope and the flows expanding in the area allowed us to characterize the flow features. This evidence was integrated with satellite, GBInSAR, and seismic data, thus enabling a reconstruction of the whole volcanic event, which involved several small collapses of the summit cone and the generation of pyroclastic density currents (PDCs) spreading along the slope and on the sea surface. Satellite monitoring allowed for the mapping of the lava flow field and the quantification of the erupted volume, and GBInSAR continuous measurements detected the crater widening and the deflation of the summit cone caused by the last overflow. The characterization of the seismicity made it possible to identify the signals that are associated with the propagation of PDCs along the volcano flank and, for the first time, to recognize the signal that is produced by the impact of the PDCs on the coast.
    Description: This work has been financially supported by the “Presidenza del Consiglio dei Ministri—Dipartimento della Protezione Civile” (Presidency of the Council of Ministers–Department of Civil Protection) (DPC-UNIFI Agreement 2019–2021; Scientific Responsibility: N.C.); this publication, however, does not necessarily reflect the position and the official policies of the Department. Additional funds for paper publication have been provided by INGV-OE.
    Description: Published
    Description: 3010
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Stromboli ; Volcanic hazard ; Volcanic hazard assessment ; Multidisciplinary data integration ; Stromboli Volcano monitoring ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-10-09
    Description: Satellite-derived data, including an estimation of the eruption rate, proximal volcanic deposits and lava flow morphometric parameters (area, maximum length, thickness, and volume) are provided for the eruption that occurred at Mt Etna on 6–8 December 2015. This eruption took place at the New Southeast Crater (NSEC), the youngest of the summit craters of Etna, shortly after a sequence of four violent paroxysmal events took place in 65 h (3–5 December) at “Voragine”, the oldest summit crater. Multispectral SEVIRI images at 15 min sampling time have been used to compute time-averaged eruption rate curves, while tri-stereo Pléiades images, at 50 cm spatial resolution, provided the pre-eruptive topography and topographic changes due to volcanic deposits. In addition to the two types of satellite data, other parameters have been inferred, such as probable vesicularity and pyroclastic deposits.
    Description: Published
    Description: id 120
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: N/A or not JCR
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-10-09
    Description: The formation of new craters or cones in active volcanoes can influence the style and frequency of eruptions and may also significantly affect volcanic hazard. Here, we explore how the lava flow hazard changed on Mount Etna in the past 20 years, while continuous shifts in the location of volcanism in the summit area were experienced. The summit area of Mount Etna has undergone large morphological variations since the formation of the South-East Crater (SEC) in 1971 and New Southeast Crater (NSEC) in 2007, which have also marked a notable change in the eruptive activity of the volcano. Indeed, in less than 50 years, the SEC area has been the source of more than two hundreds of eruptions characterized by the emission of lava fountains, pyroclastic material, and short-lasting lava flows, which are the greatest hazard presented to the tourist facilities on the flanks of Etna. Here we statistically analyze the main quantitative parameters (i.e., duration and lava volume) of 154 well-documented eruptive events occurred since 1998 with the aim of characterizing the time-volume evolution of the SEC activity. From 1998 to 2018, we find a cumulative volume of 135 millions of cubic meters that gives a long-term output rate of 0.21 m3/s, with a remarkable change in the eruptive style (longer and more voluminous events) starting from 2011. Taking advantage of this analysis and lava flow simulations run on a Pléiades-derived topography updated to 2016, we also present the new hazard map from lava flow inundation in the SEC area, which is quite different from the hazard map produced in 2011, covering an area of 15 km2 and reaching the lowest altitude of about 1,500 m a.s.l. This map establishes an important basis for mitigation decisions and long-term territorial planning, allowing key at risk areas to be rapidly and appropriately identified.
    Description: Published
    Description: Article 213
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-03-12
    Description: The Etna flank eruption that started on 24 December 2018 lasted a few days and involved the opening of an eruptive fissure, accompanied by a seismic swarm and shallow earthquakes, significant SO2 flux release, and by large and widespread ground deformation, especially on the eastern flank of the volcano. Lava fountains and ash plumes from the uppermost eruptive fissure accompanied the opening stage, causing disruption to Catania International Airport, and were followed by a quiet lava effusion within the barren Valle del Bove depression until 27 December. This was the first flank eruption to occur at Etna in the last decade, during which eruptive activity was confined to the summit craters and resulted in lava fountains and lava flow output from the crater rims. In this paper, we used ground and satellite remote sensing techniques to describe the sequence of events, quantify the erupted volumes of lava, gas, and tephra, and assess volcanic hazards.
    Description: Published
    Description: id 905
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Etna volcano ; satellite monitoring ; remote sensing ; hazard assessment ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-22
    Description: Between December 2020 and February 2022, the South East Crater of Etna has been the source of numerous eruptions, mostly characterized by the emission of lava fountains, pyroclastic material and short-lasting lava flows. Here we estimate the volume and distribution of the lava deposits by elaborating multi-source satellite imagery. SEVIRI data have been elaborated using CL-HOTSAT to estimate the lava volume emitted during each event and calculate the cumulative volume; Pléiades and WorldView-1 data have been used to derive Digital Surface Models, whose differences provide thickness distributions and hence volumes of the volcanic deposits. We find a good agreement, with the total average lava volume obtained by SEVIRI reaching 73.2 × 106 m3 and the one from optical data amounting to 67.7 × 106 m3. This proves the robustness of both techniques and the accuracy of the volume estimates, which provide important information on the lava flooding history and evolution of the volcano.
    Description: This work was supported by the INGV project Pianeta Dinamico (CUP D53J19000170001) funded by MIUR (“Fondo finalizzato al rilancio degli investimenti delle amministrazioni centrali dello Stato e allo sviluppo del Paese,” legge 145/2018), Tema 8—PANACEA, Scientific Responsibility: A.C.). The research was also funded by “TUNE—Effusion rate estimates at Etna and Stromboli: constraints imposed by a variety of satellite remote sensing data” (Bando di Ricerca Libera 2019 of INGV; Scientific Responsibility: G.G.). This research was also supported by the Project FIRST—ForecastIng eRuptive activity at Stromboli volcano: timing, eruptive style, size, intensity, and duration, INGV-Progetto Strategico Dipartimento Vulcani 2019 (Delibera n. 144/2020; Scientific Responsibility: S.C.).
    Description: Published
    Description: 916
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: thermal infrared satellite imagery ; photogrammetry ; effusion rate curves ; volcanic hazards ; Etna volcano ; Lava Fountaining ; Remote sensing ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...