GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.03. Geodesy  (1)
  • File content; File name; File size; pan-Antarctica; Uniform resource locator/link to file  (1)
  • Ice sheet mass balance  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Sasgen, Ingo; Martín-Español, Alba; Horvath, Alexander; Klemann, Volker; Petrie, Elizabeth J; Wouters, Bert; Horwath, Martin; Pail, Roland; Bamber, Jonathan L; Clarke, Peter J; Konrad, Hannes; Wilson, Terry; Drinkwater, Mark R (2018): Altimetry, gravimetry, GPS and viscoelastic modeling data for the joint inversion for glacial isostatic adjustment in Antarctica (ESA STSE Project REGINA). Earth System Science Data, 10(1), 493-523, https://doi.org/10.5194/essd-10-493-2018
    Publication Date: 2024-04-29
    Description: A major uncertainty in determining the mass balance of the Antarctic ice sheet from measurements of satellite gravimetry, and to a lesser extent satellite altimetry, is the poorly known correction for the ongoing deformation of the solid Earth caused by glacial isostatic adjustment (GIA). In the past decade, much progress has been made in consistently modelling the ice sheet and solid Earth interactions; however, forward-modelling solutions of GIA in Antarctica remain uncertain due to the sparsity of constraints on the ice sheet evolution, as well as the Earth's rheological properties. An alternative approach towards estimating GIA is the joint inversion of multiple satellite data - namely, satellite gravimetry, satellite altimetry and GPS, which reflect, with different sensitivities, trends of recent glacial changes and GIA. Crucial to the success of this approach is the accuracy of the space-geodetic data sets. Here, we present reprocessed rates of surface-ice elevation change (Envisat/ICESat; 2003-2009), gravity field change (GRACE; 2003-2009) and bedrock uplift (GPS; 1995-2013). The data analysis is complemented by the forward-modelling of viscoelastic response functions to disc load forcing, allowing us to relate GIA-induced surface displacements with gravity changes for different rheological parameters of the solid Earth. The data and modelling results presented here form the basis for the joint inversion estimate of present-day ice-mass change and GIA in Antarctica. This paper presents the first of two contributions summarizing the work carried out within a European Space Agency funded study, REGINA, (http://www.regina-science.eu).
    Keywords: File content; File name; File size; pan-Antarctica; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 16 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-01-25
    Description: Analysis | Published: 13 June 2018 Mass balance of the Antarctic Ice Sheet from 1992 to 2017 The IMBIE team Naturevolume 558, pages219–222 (2018) | Download Citation Abstract The Antarctic Ice Sheet is an important indicator of climate change and driver of sea-level rise. Here we combine satellite observations of its changing volume, flow and gravitational attraction with modelling of its surface mass balance to show that it lost 2,720 ± 1,390 billion tonnes of ice between 1992 and 2017, which corresponds to an increase in mean sea level of 7.6 ± 3.9 millimetres (errors are one standard deviation). Over this period, ocean-driven melting has caused rates of ice loss from West Antarctica to increase from 53 ± 29 billion to 159 ± 26 billion tonnes per year; ice-shelf collapse has increased the rate of ice loss from the Antarctic Peninsula from 7 ± 13 billion to 33 ± 16 billion tonnes per year. We find large variations in and among model estimates of surface mass balance and glacial isostatic adjustment for East Antarctica, with its average rate of mass gain over the period 1992–2017 (5 ± 46 billion tonnes per year) being the least certain.
    Description: Published
    Description: 219-222
    Description: 5A. Paleoclima e ricerche polari
    Description: JCR Journal
    Keywords: Antarctica ; Ice sheet mass balance ; 02.02. Glaciers ; 04.03. Geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...