GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (2)
  • -; 19-Hexanoyloxyfucoxanthin; 19-Hexanoyloxyfucoxanthin, standard deviation; Amundsen Sea; Area/locality; Carbon, organic, particulate; Chlorophyll a; Chlorophyll a, standard deviation; DEPTH, water; DynaLiFe; Event label; Experiment; Fucoxanthin; Fucoxanthin, standard deviation; GOFLO; Go-Flo bottles; High Performance Liquid Chromatography (HPLC); Ice coverage; International Polar Year (2007-2008); IPY; Iron, dissolvable; Iron, dissolvable, standard deviation; Iron, dissolved; Iron, dissolved, standard deviation; Latitude of event; Longitude of event; Maximum photochemical quantum yield of photosystem II; Nathaniel B. Palmer; NBP0901; NBP0901_E1; NBP0901_E11; NBP0901_E12; NBP0901_E2; NBP0901_E3; NBP0901_E4; NBP0901_E5; NBP0901_E6; NBP0901_E7; NBP0901_E8; NBP0901_E9; Nitrate; Nitrogen, organic, particulate; Phosphate; Standard error  (1)
  • Ammonium; Ammonium, standard deviation; Auto-analyzer II, Technicon; Carbon, organic, particulate; Carbon, organic, particulate, integrated; Carbon, organic, particulate, standard deviation; Carbon dioxide; Carbon dioxide, standard deviation; CORSACS II; DATE/TIME; Date/time end; Event label; International Polar Year (2007-2008); IPY; Mass spectrometer Finnigan MAT 252; Nathaniel B. Palmer; NBP0608; NBP0608_all; NBP9807; NBP9807_all; NBP9807_early; NBP9807_late; Nitrate; Nitrate, standard deviation; Nitrite; Nitrite, standard deviation; Nitrogen, inorganic; Nitrogen, inorganic, standard deviation; Nitrogen, particulate; Nitrogen, particulate, standard deviation; Phosphate; Phosphate, standard deviation; ROAVERRS; Ross Sea; Salinity, brine; Salinity, standard deviation; Sample amount, subset; Sample type; Silicate; Silicate, standard deviation; SNOW; Snow/ice sample; δ13C, carbon dioxide, atmospheric; δ13C, carbon dioxide, standard deviation; δ13C, particulate organic carbon; δ13C, standard deviation  (1)
Document type
  • Data  (2)
Source
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mills, Matthew M; Alderkamp, Anne-Carlijn; Thuróczy, Charles-Edouard; van Dijken, Gert L; Laan, Patrick; de Baar, Hein J W; Arrigo, Kevin R (2012): Phytoplankton biomass and pigment responses to Fe amendments in the Pine Island and Amundsen polynyas. Deep Sea Research Part II: Topical Studies in Oceanography, 71-76, 61-76, https://doi.org/10.1016/j.dsr2.2012.03.008
    Publication Date: 2023-12-13
    Description: Nutrient addition experiments were performed during the austral summer in the Amundsen Sea (Southern Ocean) to investigate the availability of organically bound iron (Fe) to the phytoplankton communities, as well as assess their response to Fe amendment. Changes in autotrophic biomass, pigment concentration, maximum photochemical efficiency of photosystem II, and nutrient concentration were recorded in response to the addition of dissolved free Fe (DFe) and Fe bound to different model ligands. Analysis of pigment concentrations indicated that the autotrophic community was dominated by the prymnesiophyte Phaeocystis antarctica throughout most of the Amundsen Sea, although diatoms dominated in two experiments conducted in the marginal ice zone. Few significant differences in bulk community biomass (particulate organic carbon, nitrogen, and chlorophyll a) were observed, relative to the controls, in treatments with Fe added alone or bound to the ligand phytic acid. In contrast, when Fe was bound to the ligand desferrioxamine B (DFB), decreases in the bulk biomass indices were observed. The concentration of the diatom accessory pigment fucoxanthin showed little response to Fe additions, while the concentration of the P. antarctica-specific pigment, 19'-hexanoyloxyfucoxanthin (19'-hex), decreased when Fe was added alone or bound to the model ligands. Lastly, differences in the nitrate:phosphate (NO3- :PO4**3-) utilization ratio were observed between the Fe-amended treatments, with Fe bound to DFB resulting in the lowest NO3- :PO4**3- uptake ratios (~ 10) and the remaining Fe treatments having higher NO3- :PO4**3- uptake ratios (~ 17). The data are discussed with respect to glacial inputs of Fe in the Amundsen Sea and the bioavailability of Fe. We suggest that the previously observed high NO3- :PO4**3- utilization ratio of P. antarctica is a consequence of its production of dissolved organic matter that acts as ligands and increases the bioavailability of Fe, thereby stimulating the uptake of NO3-.
    Keywords: -; 19-Hexanoyloxyfucoxanthin; 19-Hexanoyloxyfucoxanthin, standard deviation; Amundsen Sea; Area/locality; Carbon, organic, particulate; Chlorophyll a; Chlorophyll a, standard deviation; DEPTH, water; DynaLiFe; Event label; Experiment; Fucoxanthin; Fucoxanthin, standard deviation; GOFLO; Go-Flo bottles; High Performance Liquid Chromatography (HPLC); Ice coverage; International Polar Year (2007-2008); IPY; Iron, dissolvable; Iron, dissolvable, standard deviation; Iron, dissolved; Iron, dissolved, standard deviation; Latitude of event; Longitude of event; Maximum photochemical quantum yield of photosystem II; Nathaniel B. Palmer; NBP0901; NBP0901_E1; NBP0901_E11; NBP0901_E12; NBP0901_E2; NBP0901_E3; NBP0901_E4; NBP0901_E5; NBP0901_E6; NBP0901_E7; NBP0901_E8; NBP0901_E9; Nitrate; Nitrogen, organic, particulate; Phosphate; Standard error
    Type: Dataset
    Format: text/tab-separated-values, 241 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Munro, David R; Dunbar, Robert B; Mucciarone, David A; Arrigo, Kevin R; Long, Matthew C (2010): Stable isotope composition of dissolved inorganic carbon and particulate organic carbon in sea ice from the Ross Sea, Antarctica. Journal of Geophysical Research, 115(C9), C09005, https://doi.org/10.1029/2009JC005661
    Publication Date: 2024-05-22
    Description: We examined controls on the carbon isotopic composition of sea ice brines and organic matter during cruises to the Ross Sea, Antarctica in November/December 1998 and November/December 2006. Brine samples were analyzed for salinity, nutrients, total dissolved inorganic carbon (sum CO2), and the 13C/12C ratio of Sum CO2 (d13C(sum CO2)). Particulate organic matter from sea ice cores was analyzed for percent particulate organic carbon (POC), percent total particulate nitrogen (TPN), and stable carbon isotopic composition (d13C(POC)). Sum CO2 in sea ice brines ranged from 1368 to 7149 µmol/kg, equivalent to 1483 to 2519 µmol/kg when normalized to 34.5 psu salinity (s sum CO2), the average salinity of Ross Sea surface waters. Sea ice primary producers removed up to 34% of the available sum CO2, an amount much higher than the maximum removal observed in sea ice free water. Carbonate precipitation and CO2 degassing may reduce s sum CO2 by a similar amount (e.g., 30%) in the most hypersaline sea ice environments, although brine volumes are low in very cold ice that supports these brines. Brine d13C(sum CO2) ranged from -2.6 to +8.0 per mil while d13C(POC) ranged from -30.5 to -9.2 per mil. Isotopic enrichment of the sum CO2 pool via net community production accounts for some but not all carbon isotopic enrichment of sea ice POC. Comparisons of s sum CO2, d13C(sum CO2), and d13C(POC) within sea ice suggest that epsilon p (the net photosynthetic fractionation factor) for sea ice algae is ~8 per mil smaller than the epsilon p observed for phytoplankton in open water regions of the Ross Sea. These results have implications for modeling of carbon uptake and transformation in the ice-covered ocean and for reconstruction of past sea ice extent based on stable isotopic composition of organic matter in sediment cores.
    Keywords: Ammonium; Ammonium, standard deviation; Auto-analyzer II, Technicon; Carbon, organic, particulate; Carbon, organic, particulate, integrated; Carbon, organic, particulate, standard deviation; Carbon dioxide; Carbon dioxide, standard deviation; CORSACS II; DATE/TIME; Date/time end; Event label; International Polar Year (2007-2008); IPY; Mass spectrometer Finnigan MAT 252; Nathaniel B. Palmer; NBP0608; NBP0608_all; NBP9807; NBP9807_all; NBP9807_early; NBP9807_late; Nitrate; Nitrate, standard deviation; Nitrite; Nitrite, standard deviation; Nitrogen, inorganic; Nitrogen, inorganic, standard deviation; Nitrogen, particulate; Nitrogen, particulate, standard deviation; Phosphate; Phosphate, standard deviation; ROAVERRS; Ross Sea; Salinity, brine; Salinity, standard deviation; Sample amount, subset; Sample type; Silicate; Silicate, standard deviation; SNOW; Snow/ice sample; δ13C, carbon dioxide, atmospheric; δ13C, carbon dioxide, standard deviation; δ13C, particulate organic carbon; δ13C, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 404 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...