GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (2)
  • 1
    Publication Date: 2023-03-09
    Description: The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state‐of‐the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system's role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures, and presence of sea ice year‐round hamper field and remotely sensed measurements. We highlight the importance of winter and under‐ice conditions in the southern WG, the role that new technology will play to overcome present‐day sampling limitations, the importance of the WG connectivity to the low‐latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East‐West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long‐term data to determine trends and will improve representation of processes for regional, Antarctic‐wide, and global modeling efforts—thereby enhancing predictions of the WG in global ocean circulation and climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: During the Polarstern (PS94) expedition, summer 2015, part of the international GEOTRACES program, sources and sinks of dissolved (D) Cd, Co, Cu, Fe, Mn, Ni and Zn were studied in the central Arctic Ocean. In the Polar Surface Water in which the TransPolar Drift (TPD) is situated, salinity and δ18O derived fractions indicated a distinct riverine source for silicate DCo, DCu, DFe, DMn and DNi. Linear relationships between DMn and the meteoric fraction depended on source distance, likely due to Mn-precipitation during transport. In the upper 50 m of the Makarov Basin, outside the TPD core, DCo, DMn, DNi, DCd and DCu were enriched by Pacific waters, whereas DFe seemed diluted. DCo, DFe, DMn and DZn were relatively high in the Barents Sea and led to enrichment of Atlantic water flowing into the Nansen Basin. Deep concentrations of all metals were significantly lower in the Makarov Basin compared to the Nansen and Amundsen, the Eurasian, Basins. The Gakkel ridge hydrothermal input and higher continental slope convection are explanations for higher metal concentrations in the Eurasian Basins. Although scavenging rates are lower in the Makarov Basin compared to the Eurasian Basins, the residence time is longer and therefore scavenging can decrease the dissolved concentrations with time. This study provides a baseline to assess future change, and additionally identifies processes driving trace metal distributions. Our results underline the importance of fluvial input as well as shelf sources and internal cycling, notably scavenging, for the distribution of bio-active metals in the Arctic Ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...