GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-02-01
    Description: We attempt to assess the Holocene surface-subsurface seawater density gradient on millennial time scale based on the reconstruction of potential density (σθ) by combining data from dinoflagellate cyst assemblages and planktic foraminiferal (Neogloboquadrina pachyderma (s)) stable oxygen isotopes (δ18Oc). Following several calibration exercises, the likeliness of favorable seasonal preconditioning to open ocean convection is evaluated. The reconstructed σθ values reveal unfavorable conditions for vertical convection in the western Nordic Seas prior to ~7–6.5 ka B.P., with a westward increase and persistence of surface water buoyancy. Active overturning became more likely after 6.5 ka B.P. as suggested by a reduced and recurrently inverted vertical σθ gradient, while intermittent eastward spreading of lower density surface waters continued to modulate the area of potential overturning. Despite some reservation regarding the accuracy of the σθ values reconstructed, the documentation of relative changes of σθ gradients through time and space is suggested as a helpful tool for the appraisal of past overturning likeliness.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Limited constraints on the variability of the deep-water production in the Labrador Sea complicate reconstructions of the strength of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Quaternary. Large volumes of detrital carbonates were repeatedly deposited in the Labrador Sea during the last 32 kyr, potentially affecting radiogenic Nd isotope signatures. To investigate this the Nd isotope compositions of deep and intermediate waters were extracted from the authigenic Fe-Mn oxyhydroxide fraction, foraminiferal coatings, the residual silicates and leachates of dolostone grains. We provide a first order estimation of Nd release via dissolution of detrital carbonates and its contribution to the authigenic ԑNd signatures in the Labrador Sea. During the Last Glacial Maximum the Nd isotope signatures in the Labrador Sea would allow active water mass mixing with more radiogenic ɛNd values (-12.6 and -14) prevailing in its eastern part whereas less radiogenic values (ɛNd ∼ -18.4) were found on the western Labrador slope. The deposition of detrital carbonates during Heinrich stadials (2,1) was accompanied by negative detrital and authigenic Nd isotope excursions (ɛNd ∼ -31) that were likely controlled by dissolution of dolostone or dolostone associated mineral inclusions. This highly unradiogenic signal dominated the authigenic phases and individual water masses in the Labrador Sea, serving as potential source of highly unradiogenic Nd to the North Atlantic region, while exported southward. The Holocene authigenic ɛNd signatures of the coatings and leachates significantly differed from those of the detrital silicates, approaching modern bottom water mass signatures during the Late Holocene. Key Points - Estimation of Nd release via dissolution of detrital carbonates and its contribution to the authigenic ԑNd signatures in the Labrador Sea - Dissolution of detrital dolostones in the water column during Heinrich stadials at least partially controlled ɛNd signatures - During the LGM generally more radiogenic signatures possibly indicate active water mass advection and mixing in the Labrador Sea
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...