GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: Microbathymetry data, in situ observations, and sampling along the 138200N and 138200N oceanic core complexes (OCCs) reveal mechanisms of detachment fault denudation at the seafloor, links between tectonic extension and mass wasting, and expose the nature of corrugations, ubiquitous at OCCs. In the initial stages of detachment faulting and high-angle fault, scarps show extensive mass wasting that reduces their slope. Flexural rotation further lowers scarp slope, hinders mass wasting, resulting in morphologically complex chaotic terrain between the breakaway and the denuded corrugated surface. Extension and drag along the fault plane uplifts a wedge of hangingwall material (apron). The detachment surface emerges along a continuous moat that sheds rocks and covers it with unconsolidated rubble, while local slumping emplaces rubble ridges overlying corrugations. The detachment fault zone is a set of anostomosed slip planes, elongated in the alongextension direction. Slip planes bind fault rock bodies defining the corrugations observed in microbathymetry and sonar. Fault planes with extension-parallel stria are exposed along corrugation flanks, where the rubble cover is shed. Detachment fault rocks are primarily basalt fault breccia at 138200N OCC, and gabbro and peridotite at 138300N, demonstrating that brittle strain localization in shallow lithosphere form corrugations, regardless of lithologies in the detachment zone. Finally, faulting and volcanism dismember the 138300N OCC, with widespread present and past hydrothermal activity (Semenov fields), while the Irinovskoe hydrothermal field at the 138200N core complex suggests a magmatic source within the footwall. These results confirm the ubiquitous relationship between hydrothermal activity and oceanic detachment formation and evolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: We present two ∼150-km-long orthogonal 2D P-wave tomographic velocity models across and along the ridge axis of the ultraslow-spreading Southwest Indian Ridge at 64°30′E. Here, detachment faults largely accommodate seafloor accretion by mantle exhumation. The velocity models are constructed by inverting first arrival traveltimes recorded by 32 ocean bottom seismometers placed on the two profiles. The velocities increase rapidly with depth, from 3 to 3.5 km/s at the seafloor to 7 km/s at depths ranging from 1.5 to 6 km below the seafloor. The vertical gradient decreases for velocities 〉7 km/s. We suggest that changes in velocity with depth are related to changes in the degree of serpentinization and interpret the lithosphere to be composed of highly fractured and fully serpentinized peridotites at the top with a gradual downward decrease in serpentinization and pore space to unaltered peridotites. One active and five abandoned detachment faults are identified on the ridge-perpendicular profile. The active axial detachment fault (D1) shows the sharpest lateral change (horizontal gradient of ∼1 s–1) and highest vertical gradient (∼2 s–1) in the velocities. In the western section of the ridge-parallel profile, the lithosphere transitions from non-volcanic to volcanic over a distance of ∼10 km. The depth extent of serpentinization on the ridge-perpendicular profile ranges from ∼2 to 5 km, with the deepest penetration at the D1 hanging wall. On the ridge-parallel profile, this depth (∼2.5–4 km) varies less as the profile crosses the D1 hanging wall at ∼5–9 km south of the ridge axis.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...