GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-01-21
    Description: At convergent margins, the structure of the subducting oceanic plate is one of the key factors controlling the morphology of the upper plate. We use high-resolution seafloor mapping and multichannel seismic reflection data along the accretionary Sumatra trench system to investigate the morphotectonic response of the upper plate to the subduction of lower plate fabric. Upper plate segmentation is reflected in varying modes of mass transfer. The deformation front in the southern Enggano segment is characterized by neotectonic formation of a broad and shallow fold-and-thrust belt consistent with the resumption of frontal sediment accretion in the wake of oceanic relief subduction. Conversely, surface erosion increasingly shapes the morphology of the lower slope and accretionary prism towards the north where significant oceanic relief is subducted. Subduction of the Investigator Fracture Zone and the fossil Wharton spreading centre in the Siberut segment exemplifies this. Such features also correlate with an irregularly trending deformation front suggesting active frontal erosion of the upper plate. Lower plate fabric extensively modulates upper plate morphology and the large-scale morphotectonic segmentation of the Sumatra trench system is linked to the subduction of reactivated fracture zones and aseismic ridges of the Wharton Basin. In general, increasing intensity of mass-wasting processes, from south to north, correlates with the extent of oversteepening of the lower slope (lower slope angle of 3.8 degrees in the south compared with 7.6 degrees in the north), probably in response to alternating phases of frontal accretion and sediment underthrusting. Accretionary mechanics thus pose a second-order factor in shaping upper plate morphology near the trench.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Wiley
    In:  Geophysical Journal International, 151 (1). pp. 172-183.
    Publication Date: 2018-07-17
    Description: An approximation to the traveltime field is calculated for an elastic wave that propagates in a homogeneous anisotropic layer and is reflected at a plane boundary. The traveltime is approximated by a Taylor series expansion with the third derivative of the traveltime being taken into account. The coefficients of the series refer to the seismic ray, which is locally the fastest ray. Simple formulae are obtained for orthorhombic media in the crystal coordinate system, which relate the traveltimes of the reflected waves to the elastic constants of the medium. A numerical example is presented for wave propagation in orthorhombic olivine, which is a constituent of the Earth's mantle. A second example is given by an isotropic host rock with a set of parallel cracks, which is an important model for wave propagation in the Earth's crust. The elastic parameters can be determined by measuring the reflection times as a function of source–receiver offset. The approximate traveltime–distance curves are compared with traveltimes obtained from seismic ray tracing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-07-16
    Description: A bottom simulating reflector (BSR), which marks the base of the gas hydrate stability zone, has been detected for the first time in seismic data of the Black Sea. The survey area is in the northwestern Black Sea at 44°–45°N and 31.5°–32.5°E. In this paper, seismic wide-angle ocean bottom hydrophone (OBH) and ocean bottom seismometer (OBS) data are investigated with the goal to quantify the gas hydrate and free gas saturation in the sediment. An image of the subsurface is computed from wide-angle data by using Kirchhoff depth migration. The image shows the BSR at 205–270 m depth below the seafloor and six to eight discrete layer boundaries between the seafloor and the BSR. The top of the hydrate layer and the bottom of the gas layer cannot be identified by seismic reflection signals. An analysis of traveltimes and reflection amplitudes leads to 1-D P-wave velocity–depth and density–depth models. An average S-wave velocity of 160 m s−1 between the seafloor and the BSR is determined from the traveltime of the P to S converted wave. The normal incidence PP reflection coefficient at the BSR is −0.11, where the P-wave velocity decreases from 1840 to 1475 m s−1. Velocities and density are used to compute the porosity and the system bulk modulus as a function of depth. The Gassmann equation for porous media is used to derive explicit formulae for the gas hydrate and free gas saturation, which depend on porosity and on the bulk moduli of the dry and saturated sediment. A gas hydrate saturation–depth profile is obtained, which shows that there is 38 ± 10 per cent hydrate in the pore space at the BSR depth, where the porosity is 57 per cent (OBS 24). This value is derived for the case that the gas hydrate does not cement the sediment grains, a model that is supported by the low S-wave velocities. There is 0.9 or 0.1 per cent free gas in the sediment below the BSR, depending on the model for the gas distribution in the sediment. The free gas layer may be more than 100 m thick as a result of a zone of enhanced reflectivity, which can be identified in the subsurface image.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...