GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    University of California Press ; 2022
    In:  Elementa: Science of the Anthropocene Vol. 10, No. 1 ( 2022-02-10)
    In: Elementa: Science of the Anthropocene, University of California Press, Vol. 10, No. 1 ( 2022-02-10)
    Abstract: Understanding larval growth, mediated by the interaction of early life traits and environmental conditions, is crucial to elucidate population dynamics. We used a bioenergetic model as an integrative tool to simulate the growth of Arctic cod (Boreogadus saida) larvae and to test the sensitivity of modeled growth to temperature and food quantity and quality. The growth was computed as the energy gained through food consumption minus the energy lost through respiration and other metabolic processes. We extended a previously published bioenergetic model to cover the full range of larval length and used a simplified feeding module. This simplification allowed us to build a predictive tool that can be applied to larval Arctic cod at a large spatial scale. Our model suggested that with subzero temperatures in the High Arctic, larvae need to increase food consumption in order to reach the observed length-at-age in late summer. The modeled growth agreed well with the field observations in the High Arctic but was 2–3 times higher than the laboratory-derived growth rate, probably due to differences in food type and selective mortality. Our study reveals important knowledge gaps in our understanding of larval cod growth in the High Arctic, including the lack of empirical estimations of daily ration and respiration for larvae under the natural habitat temperatures.
    Type of Medium: Online Resource
    ISSN: 2325-1026
    Language: English
    Publisher: University of California Press
    Publication Date: 2022
    detail.hit.zdb_id: 2745461-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Elem Sci Anth, University of California Press, Vol. 11, No. 1 ( 2023-08-08)
    Abstract: Arctic cod (Boreogadus saida) is the most abundant forage fish in the Arctic Ocean. Here we review Arctic cod habitats, distribution, ecology, and physiology to assess how climate change and other anthropogenic stressors are affecting this key species. This review identifies vulnerabilities for different life stages across the entire distribution range of Arctic cod. We explore the impact of environmental (abiotic and biotic) and anthropogenic stressors on Arctic cod with a regional perspective in a scenario up to the year 2050 and identify knowledge gaps constraining predictions. Epipelagic eggs and larvae are more vulnerable to climate change and stressors than adults. Increased water temperatures, sea-ice decline, altered freshwater input, acidification, changing prey field, increased interspecific competition, new predators, and pollution are the principal stressors that will affect Arctic cod populations. Detrimental effects are likely to be greater in regions characterized by the advection of warmer Atlantic and Pacific waters. In contrast, Arctic cod may benefit from ocean warming in colder areas of the High Arctic. The risk from fisheries is moderate and primarily limited to bycatch. Overall, a decrease in suitable habitat and an associated decline in total Arctic cod biomass are predicted. In most Arctic seas, the relative abundance of Arctic cod within the fish community will likely fluctuate in accordance with cold and warm periods. A reduced abundance of Arctic cod will negatively affect the abundance, distribution, and physiological condition of certain predators, whereas some predators will successfully adapt to a more boreal diet. Regional management measures that recognize the critical role of Arctic cod are required to ensure that increased anthropogenic activities do not exacerbate the impacts of climate change on Arctic marine ecosystems. Ultimately, the mitigation of habitat loss for Arctic cod will only be achieved through a global reduction in carbon emissions.
    Type of Medium: Online Resource
    ISSN: 2325-1026
    Language: English
    Publisher: University of California Press
    Publication Date: 2023
    detail.hit.zdb_id: 2745461-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...