GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-09-21
    Description: Recent basaltic-andesite lavas from Merapi volcano contain abundant and varied igneous inclusions suggesting a complex sub-volcanic magmatic system for Merapi volcano. In order to better understand the processes occurring beneath Merapi, we have studied this suite of inclusions by petrography, geochemistry and geobarometric calculations. The inclusions may be classified into four main suites: (1) highly crystalline basaltic-andesite inclusions, (2) co-magmatic enclaves, (3) plutonic crystalline inclusions and (4) amphibole megacrysts. Highly crystalline basaltic-andesite inclusions and co-magmatic enclaves typically display liquid–liquid relationships with their host rocks, indicating mixing and mingling of distinct magmas. Co-magmatic enclaves are basaltic in composition and occasionally display chilled margins, whereas highly crystalline basaltic-andesite inclusions usually lack chilling. Plutonic inclusions have variable grain sizes and occasionally possess crystal layering with a spectrum of compositions spanning from gabbro to diorite. Plagioclase, pyroxene and amphibole are the dominant phases present in both the inclusions and the host lavas. Mineral compositions of the inclusions largely overlap with compositions of minerals in recent and historic basaltic-andesites and the enclaves they contain, indicating a cognate or ‘antelithic’ nature for most of the plutonic inclusions. Many of the plutonic inclusions plot together with the host basaltic-andesites along fractional crystallisation trends from parental basalt to andesite compositions. Results for mineral geobarometry on the inclusions suggest a crystallisation history for the plutonic inclusions and the recent and historic Merapi magmas that spans the full depth of the crust, indicating a multi-chamber magma system with high amounts of semi-molten crystalline mush. There, crystallisation, crystal accumulation, magma mixing and mafic recharge take place. Comparison of the barometric results with whole rock Sr, Nd, and Pb isotope data for the inclusions suggests input of crustal material as magma ascends from depth, with a significant late addition of sedimentary material from the uppermost crust. The type of multi-chamber plumbing system envisaged contains large portions of crystal mush and provides ample opportunity to recycle the magmatic crystalline roots as well as interact with the surrounding host lithologies.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer
    In:  Contributions to Mineralogy and Petrology, 145 (6). pp. 730-741.
    Publication Date: 2016-09-21
    Description: The REE-Ti silicate chevkinite has been recognised previously in Miocene ignimbrites from Gran Canaria, and in correlative offshore syn-ignimbrite turbidites. We have estimated the partition coefficients of REE, Y, Zr and Nb for chevkinite and co-existing peralkaline rhyolitic (comendite) glass using synchrotron-XRF-probe analyses (SYXRF) in order to evaluate the role of this mineral in the REE budget of felsic peralkaline magmas. The Zr/Nb ratio of the chevkinite is 1.55–1.7, strongly contrasting with Zr/Nb of 6.5 in the associated glass. Zr shows a three-fold enrichment in chevkinite relative to the residual melt, whereas Nb is enriched by a factor 〉10. The enrichment of Ce and La in chevkinite is even more significant, namely 19 wt(%) Ce and 12 wt(%) La, compared to 236 ppm Ce and 119 ppm La in the glass. Chevkinite/glass ratios are 988±30 for La, 806±30 for Ce, 626±30 for Pr, 615±40 for Nd, 392±50 for Sm, 225±30 for Eu, 142±25 for Gd, 72±20 for Dy. For trace elements, we derived KdTE of 74±25 for Y, 〉8 for Hf, 〉50 for Th, 15±5 for Nb and 3.55±0.4 for Zr. Mineral/glass ratios for co-existing titanite are 28±10 for La, 86±20 for Ce, 98±30 for Pr, 134±35 for Nd, 240±50 for Sm, 50±20 for Eu, 96±25 for Gd, 82±25 for Dy, 99±30 for Y, 45±10 for Nb and 3±0.5 for Zr. Based on these data, the removal of only 0.05 wt% of chevkinite from a magma with initially 300 ppm Ce would deplete the melt by 93 ppm to yield 207 ppm Ce in the residual liquid. Chevkinite thus appears, when present, to be the controlling mineral within the LREE budget of evolved peralkaline magmas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...