GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1437-3262
    Keywords: Key words Cascadia accretionary prism ; Very high-resolution seismics ; Fluid migration ; Bottom simulating reflector ; Near-surface reflectivity anomalies
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  A high-resolution seismic survey was carried out at the accretionary prism on the continental slope off Vancouver Island, Canada. Two GI-Gun data sets with different source frequency ranges of 50–150 and 100–500 Hz were combined with 4 kHz narrow-beam echosounding data (Parasound). The data allow spatial correlation between a gas hydrate bottom simulating reflector (BSR) and distinct areas of high near-sea-floor reflectivity. An integrated interpretation of the multi-frequency data set provides insight into the regional distribution of tectonically induced fluid migration and gas hydrate formation in the vicinity of ODP Leg 146 Sites 889 and 890. The BSR at the base of the gas hydrate stability field is observed within accreted and deformed sediments, but appears to be absent within bedded slope basin deposits. It is suggested that these basin deposits inhibit vertical fluid flow and prevent the formation of a BSR, whereas the hydraulic conductivity of the accreted sediments is sufficiently high to allow for pervasive gas migration. An elevation of the BSR beneath the flanks of a topographic high is interpreted as an indicator for local upflow of warm fluids along permeable pathways within outcropping accreted sediments. Parasound data reveal discontinuous zones of high reflectivity at or directly beneath the sea floor, which may indicate local cementation of surface sediments. In combination with GI-Gun data, the occurrence of these reflective areas can be related to the location of slope sedimentary basins acting as hydraulic seals. It is proposed that the seals sometimes fail along faults extending beneath the BSR, leading to focused upflow of methane-bearing fluid and the formation of carbonate pavements at the sea floor.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Marine geophysical researches 20 (1998), S. 57-71 
    ISSN: 1573-0581
    Keywords: Bengal Shelf ; seismic stratigraphy ; Parasound ; Late Quaternary ; subaqueous delta ; lowstand delta
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract An ultra-high-resolution seismic study of the eastern Bengal Shelf with the parametric narrow-beam echosounder Parasound allows the interpretation of late Quaternary depositional patterns in terms of seismic stratigraphy. Accommodation space was still present on the outer shelf during the last lowstand, where a prograding delta developed in the western survey area. Oolitic beach ridges were later formed on top of this lowstand delta. Farther east, large parts of the shelf were exposed to subaerial erosion and a river system extended seaward across the area. A subaqueous highstand delta prograded southwards following the maximum transgression about 7,000 years ago. Its foreset beds exhibit acoustic voids very likely generated by sediment liquefaction, possibly caused by episodic energetic events such as major cyclones and/or earthquakes. Bottomset sediments extend seaward close to the shelf break in the west, whereas no Holocene sediments cover the outer shelf in the east.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-08
    Description: Using high-resolution seismic data, this study aims at investigating the evolution and morphological diversity of subsea permafrost features on the eastern Laptev Sea shelf, Arctic Siberia. Several seismic facies were recognized. These relate to the major environmental changes, which affected the Laptev Sea area before, during, and after the last global transgression. Because this shallow shelf was part of the Beringian landmass, we consider a prominent subsurface seismic basal reflector as the top of the former terrestrial permafrost table. Five zones differing in geometry, reflection patterns, depths, and continuity of the permafrost top are identified. Where visible, the upper 70 m of the sediments consists of epigenetically and syngenetically frozen ice-poor sandy deposits at the base, possibly of early last glacial age, marine isotope stages (MIS) 5 and 4. These are followed by late glacial, ice-rich facies interpreted to be MIS 3 to 2. The early Holocene (MIS 1) features well-stratified lagoonal and taberal deposits. As verified by radiocarbon-dated sediment cores, these deposits are overlain by middle to late Holocene sediments with an increasingly marine signature.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2017-06-22
    Description: Very high-frequency marine multichannel seismic reflection data generated by small-volume air- or waterguns allow detailed, high-resolution studies of sedimentary structures of the order of one to few metres wavelength. The high-frequency content, however, requires (1) a very exact knowledge of the source and receiver positions, and (2) the development of data processing methods which take this exact geometry into account. Static corrections are crucial for the quality of very high-frequency stacked data because static shifts caused by variations of the source and streamer depths are of the order of half to one dominant wavelength, so that they can lead to destructive interference during stacking of CDP sorted traces. As common surface-consistent residual static correction methods developed for land seismic data require fixed shot and receiver locations two simple and fast techniques have been developed for marine seismic data with moving sources and receivers to correct such static shifts. The first method – called CDP static correction method – is based on a simultaneous recording of Parasound sediment echosounder and multichannel seismic reflection data. It compares the depth information derived from the first arrivals of both data sets to calculate static correction time shifts for each seismic channel relative to the Parasound water depths. The second method – called average static correction method – utilises the fact that the streamer depth is mainly controlled by bird units, which keep the streamer in a predefined depth at certain increments but do not prevent the streamer from being slightly buoyant in-between. In case of calm weather conditions these streamer bendings mainly contribute to the overall static time shifts, whereas depth variations of the source are negligible. Hence, mean static correction time shifts are calculated for each channel by averaging the depth values determined at each geophone group position for several subsequent shots. Application of both methods to data of a high-resolution seismic survey of channel-levee systems on the Bengal Fan shows that the quality of the stacked section can be improved significantly compared to stacking results achieved without preceding static corrections. The optimised records show sedimentary features in great detail, that are not visible without static corrections. Limitations only result from the sea floor topography. The CDP static correction method generally provides more coherent reflections than the average static correction method but can only be applied in areas with rather flat sea floor, where no diffraction hyperbolae occur. In contrast, the average static correction method can also be used in regions with rough morphology, but the coherency of reflections is slightly reduced compared to the results of the CDP static correction method.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-07
    Description: The Sorokin Trough (Black Sea) is characterized by diapiric structures formed in a compressional tectonic regime that facilitate fluid migration to the seafloor. We present acoustic data in order to image details of mud volcanoes associated with the diapirs. Three types of mud volcanoes were distinguished: cone-shaped, flat-topped, and collapsed structures. All mud volcanoes, except for the Kazakov mud volcano, are located above shallow mud diapirs and diapiric ridges. Beyond the known near-surface occurrence of gas hydrates, bottom simulating reflectors are not seen on our seismic records, but pronounced lateral amplitude variations and bright spots may indicate the presence of gas hydrates and free gas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...