GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 94 (2000), S. 335-356 
    ISSN: 1573-1472
    Keywords: Cold-air outbreak ; Surface heat fluxes ; Ronne Ice Shelf ; Thermal internal boundary layer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A simple model of the convective (thermal) internalboundary layer has been developed for climatologicalstudies of air-sea-ice interaction, where in situobservations are scarce and first-order estimates ofsurface heat fluxes are required. It is amixed-layer slab model, based on a steady-statesolution of the conservation of potentialtemperature equation, assuming a balance betweenadvection and turbulent heat-flux convergence. Boththe potential temperature and the surface heat fluxare allowed to vary with fetch, so the subsequentboundary-layer modification alters the fluxconvergence and thus the boundary-layer growth rate.For simplicity, microphysical and radiativeprocesses are neglected. The model is validated using several case studies.For a clear-sky cold-air outbreak over a coastalpolynya the observed boundary-layer heights,mixed-layer potential temperatures and surface heatfluxes are all well reproduced. In other cases,where clouds are present, the model still capturesmost of the observed boundary-layer modification,although there are increasing discrepancies withfetch, due to the neglected microphysical andradiative processes. The application of the model toclimatological studies of air-sea interaction withincoastal polynyas is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...