GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Springer
    In:  Pure and Applied Geophysics, 174 (5). pp. 2143-2160.
    Publication Date: 2020-02-06
    Description: We present an accurate interpolating method for calculating electric and magnetic fields at the seafloor with a resistivity contrast. This method is applied to the three-dimensional (3D) frequency-domain marine controlled-source electromagnetic (CSEM) modeling with the towed transmitters and receivers located at the seafloor. We simulate the 3D marine CSEM responses by the staggered finite-difference method with a direct solver. The secondary-field approach is used for avoiding the source singularities and the primary fields excited by the electric dipole source could be calculated quasi-analytically for the one-dimensional layered background. Therefore, in this study, we focus on interpolating of electric and magnetic fields to the receiver locations at the seafloor interface between the conductive seawater and resistive seafloor formation. Considering the discontinuity of the normal electric fields, we use the normal current electric density for interpolation. The secondary electric and magnetic fields are also used for interpolation instead of the total fields for high numerical accuracy. The proposed interpolation only utilizes the nodes below/above the seafloor interface and is approved to be much more accurate than other tested interpolating methods, i.e., the conventional linear interpolation and the rigorous interpolation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-23
    Description: The purpose of this paper is to present accelerations of the Mann and CQ algorithms. We first apply the Picard algorithm to the smooth convex minimization problem and point out that the Picard algorithm is the steepest descent method for solving the minimization problem. Next, we provide the accelerated Picard algorithm by using the ideas of conjugate gradient methods that accelerate the steepest descent method. Then, based on the accelerated Picard algorithm, we present accelerations of the Mann and CQ algorithms. Under certain assumptions, we show that the new algorithms converge to a fixed point of a nonexpansive mapping. Finally, we show the efficiency of the accelerated Mann algorithm by numerically comparing with the Mann algorithm. A numerical example is provided to illustrate that the acceleration of the CQ algorithm is ineffective.
    Print ISSN: 1687-1820
    Electronic ISSN: 1687-1812
    Topics: Mathematics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...