GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2017-11-06
    Description: This paper reports the results of a mineralogical study of 14 mantle peridotite samples dredged in 2009 from the eastern slope of the northwestern segment of the Stalemate Ridge in the northwestern Pacific during cruise SO201-KALMAR Leg 1b of the R/V Sonne. The sample collection included four serpentinized and silicified dunites and ten variably serpentinized lherzolites. The compositions of primary minerals (clinopyroxene, orthopyroxene, and spinel) change systematically from the lherzolites to dunites. Spinel from the lherzolites shows higher Mg# and lower Cr# values (0.65-0.68 and 0.26-0.33, respectively) compared with spinel from the dunites (Mg# = 0.56-0.64 and Cr# = 0.38-0.43). Clinopyroxene from the lherzolites is less magnesian (Mg# = 91.7-92.4) than clinopyroxene from dunite sample DR37-3 (Mg# = 93.7). Based on the obtained data, it was concluded that the lherzolites of the Stalemate Fracture Zone were derived by 10-12% near-fractional melting of a DMM-type depleted mantle reservoir beneath the Kula-Pacific spreading center. The dunites were produced by interaction of residual lherzolites with sodium- and titaniumrich melt and are probably fragments of a network of dunite channels in the shallow mantle. The moderately depleted composition of minerals clearly distinguishes the lherzolites from the strongly depleted peridotites of the East Pacific Rise and indicates the existence of slow-spreading mid-ocean ridges in the Pacific Ocean during the Cretaceous-Paleogene.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-05-23
    Description: The ~16-ka-long record of explosive eruptions from Shiveluch volcano (Kamchatka, NW Pacific) is refined using geochemical fingerprinting of tephra and radiocarbon ages. Volcanic glass from 77 prominent Holocene tephras and four Late Glacial tephra packages was analyzed by electron microprobe. Eruption ages were estimated using 113 radiocarbon dates for proximal tephra sequence. These radiocarbon dates were combined with 76 dates for regional Kamchatka marker tephra layers into a single Bayesian framework taking into account the stratigraphic ordering within and between the sites. As a result, we report ~1,700 high-quality glass analyses from Late Glacial–Holocene Shiveluch eruptions of known ages. These define the magmatic evolution of the volcano and provide a reference for correlations with distal fall deposits. Shiveluch tephras represent two major types of magmas, which have been feeding the volcano during the Late Glacial–Holocene time: Baidarny basaltic andesites and Young Shiveluch andesites. Baidarny tephras erupted mostly during the Late Glacial time (~16–12.8 ka BP) but persisted into the Holocene as subordinate admixture to the prevailing Young Shiveluch andesitic tephras (~12.7 ka BP–present). Baidarny basaltic andesite tephras have trachyandesite and trachydacite (SiO2 〈 71.5 wt%) glasses. The Young Shiveluch andesite tephras have rhyolitic glasses (SiO2 〉 71.5 wt%). Strongly calc-alkaline medium-K characteristics of Shiveluch volcanic glasses along with moderate Cl, CaO and low P2O5 contents permit reliable discrimination of Shiveluch tephras from the majority of other large Holocene tephras of Kamchatka. The Young Shiveluch glasses exhibit wave-like variations in SiO2 contents through time that may reflect alternating periods of high and low frequency/volume of magma supply to deep magma reservoirs beneath the volcano. The compositional variability of Shiveluch glass allows geochemical fingerprinting of individual Shiveluch tephra layers which along with age estimates facilitates their use as a dating tool in paleovolcanological, paleoseismological, paleoenvironmental and archeological studies. Electronic tables accompanying this work offer a tool for statistical correlation of unknown tephras with proximal Shiveluch units taking into account sectors of actual tephra dispersal, eruption size and expected age. Several examples illustrate the effectiveness of the new database. The data are used to assign a few previously enigmatic wide-spread tephras to particular Shiveluch eruptions. Our finding of Shiveluch tephras in sediment cores in the Bering Sea at a distance of ~600 km from the source permits re-assessment of the maximum dispersal distances for Shiveluch tephras and provides links between terrestrial and marine paleoenvironmental records.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-11-04
    Description: Heavy mineral associations from tephra layers in the Quaternary deposits of the Sea of Okhotsk and their chemical characteristics were studied by various techniques. It was shown that such investigations may have a bearing on the problems of tephrostratigraphic correlation. We assessed the possibility of application of the mineral composition of distal tephra for identification and, in particular, estimation of the relation of tephras to the explosive volcanism of back-arc and frontal zones of island arcs. The investigation of the compositions of minerals and use of mineral geothermometers and geobarometers (two-pyroxene, magnetite–ilmenite, and amphibole) provided evidence on the physicochemical parameters of melt crystallization during the explosive volcanic eruptions that produced the distal tephra layers. It was established that the pyroclastic material of some tephra layers was supplied during explosive eruptions not only from shallow magma chambers but also from deeper and higher temperature reservoirs. Together with the geochemical signatures of volcanic glasses, the obtained results on mineral associations and the geochemistry of mineral inclusions are applicable for the comparative analysis and correlation of tephras from marine and continental sequences, as well as for the identification of explosive volcanic products in adjacent land areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Springer
    In:  Petrology, 19 (2). pp. 134-166.
    Publication Date: 2017-01-03
    Description: Detailed geological and petrological-geochemical study of rocks of the lava complex of Young Shiveluch volcano made it possible to evaluate the lava volumes, the relative sequence in which the volcanic edifice was formed, and the minimum age of the onset of eruptive activity. The lavas of Young Shiveluch are predominantly magnesian andesites and basaltic andesites of a mildly potassic calc-alkaline series (SiO2 = 55.0–63.5 wt %, Mg# = 55.5–68.9). Geologic relations and data on the mineralogy and geochemistry of rocks composing the lava complex led us to conclude that the magnesian andesites of Young Shiveluch volcano are of hybrid genesis and are a mixture of silicic derivatives and a highly magnesian magma that was periodically replenished in the shallow-depth magmatic chamber. The fractional crystallization of plagioclase and hornblende at the incomplete segregation of plagioclase crystals from the fractionating magmas resulted in adakitic geochemical parameters (Sr/Y = 50–71, Y 〈 18 ppm) of the most evolved rock varieties. Our results explain the genesis of the rock series of Young Shiveluch volcano without invoking a model of the melting of the subducting Pacific slab at its edge.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-11-06
    Description: The paper presents data on naturally quenched melt inclusions in olivine (Fo 69–84) from Late Pleistocene pyroclastic rocks of Zhupanovsky volcano in the frontal zone of the Eastern Volcanic Belt of Kamchatka. The composition of the melt inclusions provides insight into the latest crystallization stages (~70% crystallization) of the parental melt (~46.4wt%SiO2, ~2.5wt%H2O, ~0.3wt%S), which proceeded at decompression and started at a depth of approximately 10 km from the surface. The crystallization temperature was estimated at 1100 ± 20°C at an oxygen fugacity of ΔFMQ = 0.9–1.7. The melts evolved due to the simultaneous crystallization of olivine, plagioclase, pyroxene, chromite, and magnetite (Ol : Pl : Cpx : (Crt–Mt) ~ 13 : 54 : 24 : 4) along the tholeiite evolutionary trend and became progressively enriched in FeO, SiO2, Na2O, and K2O and depleted in MgO, CaO, and Al2O3. Melt crystallization was associated with the segregation of fluid rich in S-bearing compounds and, to a lesser extent, in H2O and Cl. The primary melt of Zhupanovsky volcano (whose composition was estimated from data on the most primitive melt inclusions) had a composition of low-Si (~45wt%SiO2) picrobasalt (~14wt%MgO), as is typical of parental melts in Kamchatka and other island arcs, and was different from MORB. This primary melt could be derived by ~8% melting of mantle peridotite of composition close to the MORB source, under pressures of 1.5 ± 0.2 GPa and temperatures 20–30°C lower than the solidus temperature of “dry” peridotite (1230–1240°C). Melting was induced by the interaction of the hot peridotite with a hydrous component that was brought to the mantle from the subducted slab and was also responsible for the enrichment of the Zhupanovsky magmas in LREE, LILE, B, Cl, Th, U, and Pb. The hydrous component in the magma source of Zhupanovsky volcano was produced by the partial slab melting under water-saturated conditions at temperatures of 760–810°C and pressures of ~3.5 GPa. As the depth of the subducted slab beneath Kamchatkan volcanoes varies from 100 to 125 km, the composition of the hydrous component drastically changes from relatively low-temperature H2O-rich fluid to higher temperature H2O-bearing melt. The geothermal gradient at the surface of the slab within the depth range of 100–125 km beneath Kamchatka was estimated at 4°C/km.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Springer
    In:  International Journal of Earth Sciences, 101 (1). p. 195.
    Publication Date: 2017-05-18
    Description: Numerous ash layers deposited at the slopes of Kliuchevskoi volcano provide a detailed and continuous record of its explosive activity during the last ca. 10,000 years
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-09-23
    Description: During cruise SO201-1b of the joint Russian–German expedition on the R/V Sonne in 2009, mantle peridotites affected by varying secondary alteration were dredged on the eastern slope of the north- western segment of the Stalemate transverse ridge adjacent to the eponymous fracture zone. The collection discussed in this paper included four samples of silicified serpentinites after dunites and 11 lherzolite samples serpentinized to a varying degree. The abundance of amorphous silica and quartz, very high SiO2 content (up to 88.7 wt %), and unusually low MgO (up to 1.4 wt %) in the serpentinized dunites strongly distinguish these rocks from the known products of hydrothermal alteration and low-temperature (seafloor) weathering of peridotites in the oceanic crust. In order to determine the conditions and processes resulting in the silicifica- tion of peridotites at the Stalemate Fracture Zone, thermodynamic modeling accounting for the kinetics of mineral dissolution implemented in the GEOCHEQ program package was used in this study. The results of modeling allowed us to suppose that the geochemical and mineralogical effects observed in the silicified ser- pentinized dunites of the Stalemate Fracture Zone are consequences of low-temperature deserpentinization of oceanic materials under subaerial conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-05-23
    Description: Melt inclusions in olivine Fo83–72 from tephras of 1867, 1971 and 1992 eruptions of Cerro Negro volcano represent a series of basaltic to andesitic melts of narrow range of MgO (5.6–8 wt %) formed by ~46 wt % fractional crystallization of olivine (~6 wt %), plagioclase (~27 wt %), pyroxene (~13 wt %) and magnetite (〈1 wt %) from primitive basaltic melt (average SiO2 = 49 wt %, MgO = 7.6 wt %, H2O = 6 wt %) as it ascended to the surface from the depth of about 14 km. The crystallization occurred at increasing liquidus temperature from 1,050 to 1,090 °C in the pressure range from 400 to 50 MPa and was induced by release of mixed H2O–CO2 fluid from the melt at decreasing pressure. Matrix glass compositions fall at the high-Si end of the melt inclusion trend and represent the final stage of melt crystallization during and after eruption. The bulk compositions of erupted Cerro Negro magmas (tephras and lavas) range from high- to low-MgO (3–10 wt %) basalts, which form a compositional array crossing the trend of melt inclusions so that virtually no rock from Cerro Negro has composition akin to true melt represented by the inclusions. The variations of the bulk magma (rocks) and melt (melt inclusions) compositions can be generated in a dyke connecting a deep primitive magma reservoir with the Cerro Negro edifice. While the melt inclusions represent the compositional trend of instantaneous melts along the magma pathway at decreasing pressure and H2O content, occurrence of low-Mg to high-Mg basalts reflects the process of phenocryst re-distribution in progressively evolving melt. The crystallization scenario is anticipated to operate everywhere in dykes feeding basaltic volcanoes and can explain the predominance of plagioclase-rich high-Al basalts in island arc as well as typical compositional variations of magmas during single eruptions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-01-19
    Description: Melt and fluid inclusions have been studied in olivine phenocrysts (Fo 81–79) from trachybasalts of the Southern Baikal volcanic area, Dzhida field. The melt inclusions were homogenized, quenched, and analyzed on an electron and ion microprobe. The study of homogenized glasses of nine inclusions showed that basaltic melts (SiO2 = 47.1–50.3 wt %, MgO = 5.0–7.7 wt %, CaO = 7.1–11.1 wt %) have high contents of Al2O3 (17.1–19.6 wt %), Na2O (4.1–6.2 wt %), K2O (2.2–3.3 wt %), and P2O5 (0.6–1.1 wt %). The volatile contents are low (in wt %): 0.24–0.31 H2O, 0.08 F, 0.03 Cl, and 0.02 S. Primary fluid inclusions in olivines from four trachybasalt samples contain high-density CO2 (0.73–0.87 g/cm3), indicating a CO2 fluid pressure of 4.3–6.6 kbar at 1200–1300°C and olivine crystallization depths of 16–24 km. Ion microprobe analyses of 20 glasses from melt inclusions for trace elements showed that the magmas of the Baikal rift were enriched in incompatible elements, thus differing from oceanic rift basalts and resembling oceanic island basalts. A comparison of our data on melt and fluid inclusions in olivine from trachybasalts of the Dzhida field with preexisting data on the Eastern Tuva volcanic highland in the Southern Baikal volcanic area showed that they had similar contents of volatiles, major, and trace elements.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-01-23
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...