GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4)
  • Springer  (4)
Document type
Years
Topic
  • 1
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Picritic units of the Miocene shield volcanics on Gran Canaria, Canary Islands, contain olivine and clinopyroxene phenocrysts with abundant primary melt, crystal and fluid inclusions. Composition and crystallization conditions of primary magmas in equilibrium with olivine Fo90-92 were inferred from high-temperature microthermometric quench experiments, low-temperature microthermometry of fluid inclusions and simulation of the reverse path of olivine fractional crystallization based on major element composition of melt inclusions. Primary magmas parental for the Miocene shield basalts range from transitional to alkaline picrites (14.7–19.3 wt% MgO, 43.2–45.7 wt% SiO2). Crystallization of these primary magmas is believed to have occurred over the temperature range 1490–1150° C at pressures ≈5 kbar producing olivine of Fo80.6-90.2, high-Ti chrome spinel [Mg/ (Mg+Fe2+)=0.32–0.56, Cr/(Cr+Al)=0.50–0.78, 2.52–8.58 wt% TiO2], and clinopyroxene [Mg/(Mg+Fe)=0.79–0.88, Wo44.1-45.3, En43.9-48.0, Fs6.8-11.0] which appeared on the liquidus together with olivine≈Fo86. Redox conditions evolved from intermediate between the QFM and WM buffers to late-stage conditions of NNO+1 to NNO+2. The primary magmas crystallized in the presence of an essentially pure CO2 fluid. The primary magmas originated at pressures 〉30 kbar and temperatures of 1500–1600° C, assuming equilibrium with mantle peridotite. This implies melting of the mantle source at a depth of ≈100 km within the garnet stability field followed by migration of melts into magma reservoirs located at the boundary between the upper mantle and lower crust. The temperatures and pressures of primary magma generation suggest that the Canarian plume originated in the lower mantle at depth ≈900 km that supports the plume concept of origin of the Canary Islands.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 109 (1991), S. 225-239 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The picritic Mælifell pillow lava series contains olivine macrocrysts (Fo 83.0–91.7) and microphenocrysts (Fo 86.8–88.5), resorbed Cr−Al endiopside, ± plagioclase, and microphenocrysts of Cr-spinel. The most primitive olivine cores (Fo 90–91.7) are probably derived from a peridotitic mantle. Gabbroic adcumulus xenoliths in the lavas contain plagioclase, Cr−Al endiopside and olivine (Fo 85.5–87.5) which overlap compositionally with lava minerals, ± Cr-spinel. This suggests that all pyroxene and much of the olivine ± feldspar in the lavas are xenocrysts. Olivines from the pillow lavas and from the gabbroic xenoliths contain inclusions of Cr-spinel, silicate glass and pure or nearly pure CO2. Early (type 1) silicate melt inclusions which occur in lava-olivine only, have crystalized 0.1 to 4 vol.% daughter spinel and unknown amounts of olivine during pre-eruptive cooling. Later (type 2) glass inclusions in olivine from the lavas do not contain daughter minerals; similar type 2 inclusions also occur in the xenoliths. High-temperature microthermometry at buffered oxygen fugacity (f O 2) gives a plagioclaseout temperature of about 1230°C for both types of silicate melt inclusions; this was interpreted as the liquidus temperature for type 2 inclusions. Molar volumes of undisturbed CO2 inclusions in olivine from both lavas and xenoliths correspond to a depth of trapping of 7–10 km (2.2–3.0 kbar) at 1230°C. This is interpreted as a minimum depth to a partially molten layer near the crust/mantle boundary in the rift zone. The xenoliths are thus probably derived from a layered olivine-gabbro complex similar to those occurring in ophiolite complexes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Fluid and solid inclusions have been studied in selected samples from a series of spinel-bearing Crdiopside-and Al-augite-series ultramafic (harzburgites, lherzolites, and olivine-clinopyroxene-rich rocks), and gabbroic xenoliths from Hierro, Canary Islands. In these samples several generations of fluid inclusions and ultramafic-and mafic-glass inclusions may be texturally related to different stages of crystal growth. The fluid inclusions consist of pure, or almost pure, CO2. The solid inclusions in the ultramafic xenoliths comprise early inclusions of devitrified ultramafic glass, sulphide inclusions, as well as polyphase inclusions (spinel+clinopyroxene±glass±other silicates) believed to have formed from trapped basaltic melts. Vitreous basaltic glass±CO2±sulphide±silicates are common as secondary inclusions in the ultramafic xenoliths, and as primary inclusions in the gabbroic xenoliths. Microthermometry gives minimum trapping temperatures of 1110° C for the early ultramafic-and mafic-glass inclusions, and a maximum of 1260–1280° C for late inclusions of host basaltic glass. In most samples the CO2 inclusions show a wide range in homogenization temperatures (-40 to +31° C) as a result of decrepitation during ascent. The lowest homogenization temperatures of about-40° C, recorded in some of the smallest CO2 inclusions, indicate a minimum depth of origin of 35 km (12 kbar) for both the Cr-diopside-and Al-augite-series xenoliths. The gabbroic xenoliths originate from a former magma chamber at a depth of 6–12 km.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 132 (1998), S. 48-64 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Gabbroic and ultramafic xenoliths and olivine and clinopyroxene phenocrysts in basaltic rocks from Gran Canaria, La Palma, El Hierro, Lanzarote and La Gomera (Canary Islands) contain abundant CO2-dominated fluid inclusions. Inclusion densities are strikingly similar on a regional scale. Histogram maxima correspond to one or more of the following pressures: (1) minimum 0.55 to 1.0 GPa (within the upper mantle); (2) between 0.2 and 0.4 GPa (the Moho or the lower crust); (3) at about 0.1 GPa (upper crust). Fluid inclusions in several rocks show a bimodal density distribution, the lower-density maximum comprising both texturally early and late inclusions. This is taken as evidence for an incomplete resetting of inclusion densities, and simultaneous formation of young inclusions, at well-defined magma stagnation levels. For Gran Canaria, pressure estimates for early inclusions in harzburgite and dunite xenoliths and olivine phenocrysts in the host basanites overlap at 0.9 to 1.0 GPa, indicating that such magma reservoir depths coincide with levels of xenolith entrainment into the magmas. Magma chamber pressures within the mantle, inferred to represent levels of mantle xenolith entrainment, are 0.65–0.95 GPa for El Hierro, 0.60–0.68 GPa for La Palma, and 0.55–0.75 GPa for Lanzarote. The highest-density fluid inclusions in many Canary Island mantle xenoliths have probably survived in-situ near-isobaric heating at the depth of xenolith entrainment. Inclusion data from all islands indicate ponding of basaltic magmas at Moho or lower crustal depths, and possibly at an additional higher level, strongly suggestive of two main crustal accumulation levels beneath each island. We emphasize that repeated magmatic underplating of primitive magmas, and therefore intrusive accretion, are important growth mechanisms for the Canary Islands, and by analogy, for other ocean islands. Comparable fluid inclusion data from primitive rocks in other tectonic settings, including Iceland, Etna and continental rift systems (Hungary, South Norway), indicate that magma accumulation close to Moho depths shortly before eruption is not, however, restricted to oceanic intraplate volcanoes. Lower crustal ponding and crystallization prior to eruption may be the rule rather than the exception, independent of the tectonic setting.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...