GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-05-19
    Description: A new approach to predict biogenic particle fluxes to the seafloor is presented, which is based on diffusive oxygen uptake and, in particular, opal fluxes to the seafloor. For this purpose, we used a recently published empirical equation coupling benthic silica to oxygen fluxes, and showing a clear negative correlation between Si and O2 fluxes. Dissolution of biogenic silica mediated by aerobic microbial activity has been inferred at 24 sites along the African and South American continental margins. Based on the assumption that these findings hold essentially for the entire Southern Atlantic Ocean, we applied the silica to oxygen flux ratio to a basin-wide grid of diffusive oxygen uptake extracted from the literature. Assuming that the silica release across the sediment-water interface equals the particulate flux of biogenic opal to the seafloor, we estimated minimum opal rain rates. We combined these calculations with published relationships between aerobic organic carbon mineralization and dissolution rates of calcite above the hydrographical lysocline, thereby assessing the calcite rain rate and particulate organic carbon flux to the seafloor. The addition of the buried fraction completes our budget of biogenic particulate rain fluxes. The combination of such empirical equations provides a powerful and convenient tool which greatly facilitates future investigations of biogenic particle fluxes to the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: We investigated gas hydrate in situ inventories as well as the composition and principal transport mechanisms of fluids expelled at the Amsterdam mud volcano (AMV; 2,025 m water depth) in the Eastern Mediterranean Sea. Pressure coring (the only technique preventing hydrates from decomposition during recovery) was used for the quantification of light hydrocarbons in near-surface deposits. The cores (up to 2.5 m in length) were retrieved with an autoclave piston corer, and served for analyses of gas quantities and compositions, and pore-water chemistry. For comparison, gravity cores from sites at the summit and beyond the AMV were analyzed. A prevalence of thermogenic light hydrocarbons was inferred from average C1/C2+ ratios 〈35 and δ13C-CH4 values of −50.6‰. Gas venting from the seafloor indicated methane oversaturation, and volumetric gas–sediment ratios of up to 17.0 in pressure cores taken from the center demonstrated hydrate presence at the time of sampling. Relative enrichments in ethane, propane, and iso-butane in gas released from pressure cores, and from an intact hydrate piece compared to venting gas suggest incipient crystallization of hydrate structure II (sII). Nonetheless, the co-existence of sI hydrate can not be excluded from our dataset. Hydrates fill up to 16.7% of pore volume within the sediment interval between the base of the sulfate zone and the maximum sampling depth at the summit. The concave-down shapes of pore-water concentration profiles recorded in the center indicate the influence of upward-directed advection of low-salinity fluids/fluidized mud. Furthermore, the SO42− and Ba2+ pore-water profiles in the central part of the AMV demonstrate that sulfate reduction driven by the anaerobic oxidation of methane is complete at depths between 30 cm and 70 cm below seafloor. Our results indicate that methane oversaturation, high hydrostatic pressure, and elevated pore-water activity caused by low salinity promote fixing of considerable proportions of light hydrocarbons in shallow hydrates even at the summit of the AMV, and possibly also of other MVs in the region. Depending on their crystallographic structure, however, hydrates will already decompose and release hydrocarbon masses if sediment temperatures exceed ca. 19.3°C and 21.0°C, respectively. Based on observations from other mud volcanoes, the common occurrence of such temperatures induced by heat flux from below into the immediate subsurface appears likely for the AMV.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Reactive iron (Fe) oxides in marine sediments may represent a source of bioavailable Fe to the ocean via reductive dissolution and sedimentary Fe release or can promote organic carbon preservation and long-term burial. Furthermore, enrichments of reactive Fe (sum of Fe oxides, carbonates and sulfides normalized to total Fe) in ancient sediments are utilized as a paleo-proxy for anoxic conditions. Considering the general importance of reactive Fe oxides in marine biogeochemistry, it is important to quantify their terrestrial sources and fate at the land-ocean interface. We applied sequential Fe extractions to sediments from the Amazon shelf to investigate the transformation of river-derived Fe oxides during early diagenesis. We found that ∼22 % of the Amazon River-derived Fe oxides are converted to Fe-containing clay minerals in Amazon shelf sediments. The incorporation of reactive Fe into authigenic clay minerals (commonly referred to as reverse weathering) is substantiated by the relationship between Fe oxide loss and potassium (K) uptake from sedimentary pore waters, which is in agreement with the previously reported Fe/K stoichiometry of authigenic clay minerals. Mass balance calculations suggest that widely applied sequential extractions do not separate Fe-rich authigenic clay minerals from reactive Fe oxides and carbonates. We conclude that the balance between terrestrial supply of reactive Fe and reverse weathering in continental margin sediments has to be taken into account in the interpretation of sedimentary Fe speciation data. Key Points - Reactive Fe is transferred from river-derived Fe oxides into Fe-containing silicate minerals during early diagenesis - Standard sequential extraction schemes do not separate Fe oxides and carbonates from authigenic silicate minerals in Amazon shelf sediments - Terrigenous supply of reactive Fe and reverse weathering need to be considered in the interpretation of sedimentary Fe speciation
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-25
    Description: The Black Sea is a permanently anoxic, marine basin serving as model system for the deposition of organic-rich sediments in a highly stratified ocean. In such systems, archaeal lipids are widely used as paleoceanographic and biogeochemical proxies; however, the diverse planktonic and benthic sources as well as their potentially distinct diagenetic fate may complicate their application. To track the flux of archaeal lipids and to constrain their sources and turnover, we quantitatively examined the distributions and stable carbon isotopic compositions (delta 13C) of intact polar lipids (IPLs) and core lipids (CLs) from the upper oxic water column into the underlying sediments, reaching deposits from the last glacial. The distribution of IPLs responded more sensitively to the geochemical zonation than the CLs, with the latter being governed by the deposition from the chemocline. The isotopic composition of archaeal lipids indicates CLs and IPLs in the deep anoxic water column have negligible influence on the sedimentary pool. Archaeol substitutes tetraether lipids as the most abundant IPL in the deep anoxic water column and the lacustrine methanic zone. Its elevated IPL/CL ratios and negative delta 13C values indicate active methane metabolism. Sedimentary CL- and IPL-crenarchaeol were exclusively derived from the water column, as indicated by non-variable delta 13C values that are identical to those in the chemocline and by the low BIT (branched isoprenoid tetraether index). By contrast, in situ production accounts on average for 22% of the sedimentary IPL-GDGT-0 (glycerol dibiphytanyl glycerol tetraether) based on isotopic mass balance using the fermentation product lactate as an endmember for the dissolved substrate pool. Despite the structural similarity, glycosidic crenarchaeol appears to be more recalcitrant in comparison to its non-cycloalkylated counterpart GDGT-0, as indicated by its consistently higher IPL/CL ratio in sediments. The higher TEX86, CCaT, and GDGT-2/-3 values in glacial sediments could plausibly result from selective turnover of archaeal lipids and/or an archaeal ecology shift during the transition from the glacial lacustrine to the Holocene marine setting. Our in-depth molecular-isotopic examination of archaeal core and intact polar lipids provided new constraints on the sources and fate of archaeal lipids and their applicability in paleoceanographic and biogeochemical studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...