GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (3)
Document type
Keywords
Years
  • 1
    Publication Date: 2023-09-15
    Keywords: 1995_01090209 CTD-2 4300201; 1995_01090629 CTD-3 4300204; 1995_01100410 CTD-6 4300401; 1995_01110553 CTD-10 4300601; 1995_01110910 CTD-11 4300603; 1995_01120515 CTD-13 4300705; 1995_01130211 CTD-14 4300711; 1995_01131148 CTD-16 4300714; 1995_01140520 CTD-19 4300901; 1995_01141130 CTD-20 4300903; 1995_01150303 CTD-23 4301101; 1995_01151430 CTD-24 4301104; 1995_01170801 CTD-27 4301301; 1995_01180700 CTD-28 4301307; 1995_01181010 CTD-29 4301309; 1995_01191220 CTD-34 4301501; 1995_01191710 CTD-35 4301503; 1995_01201055 CTD-38 4301701; 1995_01211506 CTD-40 4301709; 1995_01221530 CTD-44 4301902; 1995_01222000 CTD-45 4301903; 1995_01240200 CTD-49 4302105; 1995_01241405 CTD-50 4302108; 1995_01250120 CTD-51 4302110; 1995_01270302 CTD-61 4302605; 1995_01281441 CTD-65 4302701; 1995_01290000 CTD-66 4302702; 1995_01291411 CTD-67 4302801; 1995_01300306 CTD-68 4302805; 1995_01311558 CTD-72 4302901; 1995_03150537 CTD-2 4500201; 1995_03151227 CTD-3 4500203; 1995_03160822 CTD-6 4500401; 1995_03161303 CTD-7 4500403; 1995_03171029 CTD-10 4500601; 1995_03171357 CTD-11 4500603; 1995_03180242 CTD-13 4500703; 1995_03181352 CTD-14 4500706; 1995_03181656 CTD-15 4500708; 1995_03191028 CTD-18 4500714; 1995_03201012 CTD-21 4500901; 1995_03201358 CTD-22 4500903; 1995_03210950 CTD-25 4501101; 1995_03211425 CTD-26 4501105; 1995_03230652 CTD-28 4501301; 1995_03231313 CTD-29 4501303; 1995_03241040 CTD-31 4501311; 1995_03250844 CTD-34 4501501; 1995_03251350 CTD-35 4501503; 1995_03260743 CTD-38 4501701; 1995_03270330 CTD-39 4501705; 1995_03272053 CTD-42 4501711; 1995_03290142 CTD-46 4501902; 1995_03291318 CTD-48 4501907; 1995_03300500 CTD-51 4502102; 1995_03301950 CTD-53 4502106; 1995_03310845 CTD-55 4502112; 1995_04020655 CTD-65 4502601; 1995_04021350 CTD-66 4502604; 1995_04030208 CTD-68 4502609; 1995_04030725 CTD-69 4502612; 1995_04050152 CTD-76 4502702; 1995_04050836 CTD-77 4502705; 1995_04051500 CTD-78 4502801; 1995_04052017 CTD-79 4502802; 1995_04060126 CTD-80 4502805; 1995_04070210 CTD-82 4502811; 1995_04071540 CTD-85 4502901; 1995_08012350 CTD-66 4901801; 1995_08020503 CTD-67 4901802; 1995_08022229 CTD-72 4902001; 1995_08030405 CTD-75 4902004; 1995_08031943 CTD-79 4902201; 1995_08040205 CTD-82 4902204; 1995_08041556 CTD-84 4902206; 1995_08061013 CTD-95 4902702; 1995_08061254 CTD-96 4902703; 1995_08080757 CTD-113 4902720; 1995_08082304 CTD-115 4902801; 1995_08090404 CTD-118 4902804; 1995_08091126 CTD-119 4902901; 1995_08101123 CTD-124 4902906; 1995_08111847 CTD-128 4903001; 1995_08181420 CTD-1 5000101; 1995_08181728 CTD-2 5000102; 1995_08191319 CTD-3 5000203; 1995_08191542 CTD-4 5000204; 1995_08200221 CTD-1 5000301; 1995_08200414 CTD-2 5000302; 1995_08201910 CTD-1 5000401; 1995_08202230 CTD-2 5000402; 1995_08211139 CTD-1 5000501; 1995_08211326 CTD-2 5000502; 1995_08212313 CTD-1 5000601; 1995_08220208 CTD-2 5000602; 1995_08221725 CTD-1 5000701; 1995_08221953 CTD-2 5000702; 1995_08242301 CTD-1 5000801; 1995_08250750 CTD-1 5000901; 1995_08251544 CTD-1 5001001; 1995_08252254 CTD-1 5001101; 1995_08260135 CTD-2 5001102; 1995_08262011 CTD-1 5001201; 1995_08280638 CTD-1 5001301; 1995_08282130 CTD-5 5001305; 1995_08301158 CTD-1 5001401; 1995_08301329 CTD-2 5001402; 1995_08310017 CTD-1 5001501; 1995_08310226 CTD-2 5001502; 1995_08312156 CTD-1 5001701; 1995_09030555 CTD-1 5001901; 1995_09030825 CTD-2 5001902; 1995_09032043 CTD-1 5002001; 1995_09040517 CTD-1 5002101; 1995_09040750 CTD-2 5002102; 1995_09061507 CTD-1 5002201; 1995_09062255 CTD-1 5002301; 1995_09070736 CTD-1 5002401; 1995_09080611 CTD-8 5002408; 1995_09091128 CTD-1 5002501; 1995_09091338 CTD-2 5002502; 1995_09100525 CTD-1 5002601; 1995_09100816 CTD-2 5002602; 1995_09121126 CTD-1 5002701; 1995_09121757 CTD-1 5002801; 1995_09130033 CTD-1 5002901; 1995_09130351 CTD-1 5003001; 1995_09131722 CTD-1 5003101; 1995_11301418 CTD-1 5400101; 1995_11301606 CTD-2 5400102; 1995_12010443 CTD-5 5400202; 1995_12010758 CTD-6 5400203; 1995_12010949 CTD-7 5400204; 1995_12012335 CTD-10 5400302; 1995_12020901 CTD-12 5400401; 1995_12021036 CTD-13 5400402; 1995_12021754 CTD-15 5400404; 1995_12030605 CTD-19 5400503; 1995_12031515 CTD-20 5400601; 1995_12031817 CTD-21 5400602; 1995_12032224 CTD-23 5400604; 1995_12041547 CTD-27 5400703; 1995_12042339 CTD-28 5400704; 1995_12050209 CTD-29 5400705; 1995_12051933 CTD-36 5400712; 1995_12060911 CTD-38 5400801; 1995_12061314 CTD-40 5400803; 1995_12062129 CTD-42 5400902; 1995_12070222 CTD-43 5400903; 1995_12071042 CTD-45 5401001; 1995_12071423 CTD-47 5401003; 1995_12080254 CTD-48 5401101; 1995_12080603 CTD-49 5401102; 1995_12080839 CTD-50 5401103; 1995_12082153 CTD-52 5401201; 1995_12090153 CTD-54 5401203; 1995_12101321 CTD-57 5401303; 1995_12102200 CTD-58 5401304; 1995_12110052 CTD-59 5401305; 1995_12112219 CTD-67 5401313; 1995_12121414 CTD-70 5401402; 1995_12121534 CTD-71 5401403; 1995_12130058 CTD-73 5401502; 1995_12130500 CTD-74 5401503; 1995_12131433 CTD-76 5401601; 1995_12131850 CTD-78 5401603; 1995_12140159 CTD-79 5401701; 1995_12141319 CTD-81 5401703; 1995_12150030 CTD-83 5401705; 1995_12150755 CTD-85 5401707; 1995_12160820 CTD-93 5401802; 1995_12160948 CTD-94 5401803; 1995_12161455 CTD-95 5401901; 1995_12161948 CTD-97 5401903; 1995_12162142 CTD-98 5401904; 1995_12170713 CTD-100 5402002; 1995_12170849 CTD-101 5402003; 1995_12172155 CTD-104 5402103; 1995_12180032 CTD-105 5402104; 1995_12182016 CTD-116 5402115; 1995_12190304 CTD-118 5402117; 1995_12191619 CTD-119 5402201; 1995_12191748 CTD-120 5402202; 1995_12200331 CTD-123 5402302; 1995_12200509 CTD-124 5402303; 1995_12201101 CTD-125 5402401; 1995_12202136 CTD-127 5402403; 1995_12210016 CTD-128 5402404; 1995_12212309 CTD-139 5402415; 1995_12221301 CTD-140 5402501; 1995_12221658 CTD-142 5402503; 1995_12221820 CTD-143 5402504; 1995_12230051 CTD-144 5402601; 1995_12240208 CTD-148 5402605; 1995_12240750 CTD-150 5402607; 1995_12242300 CTD-158 5402615; 1995_12260112 CTD-163 5403002; 1995_12260310 CTD-164 5403003; Arabian Sea; CTD/Rosette; CTD-RO; Date/Time of event; DEPTH, water; Event label; Flow cytometry; Latitude of event; Longitude of event; Prokaryotes; Thomas G. Thompson; TT043; TT043_11-1; TT043_11-8; TT043_13-1; TT043_13-18; TT043_13-21; TT043_15-1; TT043_15-7; TT043_17-1; TT043_17-23; TT043_19-2; TT043_19-7; TT043_2-1; TT043_21-14; TT043_21-22; TT043_21-28; TT043_2-4; TT043_26-9; TT043_27-1; TT043_27-7; TT043_28-1; TT043_28-10; TT043_29-1; TT043_4-1; TT043_6-1; TT043_6-4; TT043_7-20; TT043_7-28; TT043_7-9; TT043_9-1; TT043_9-8; TT045; TT045_11-2; TT045_11-9; TT045_13-10; TT045_13-2; TT045_13-29; TT045_15-10; TT045_15-2; TT045_17-15; TT045_17-2; TT045_17-32; TT045_19-16; TT045_19-3; TT045_2-1; TT045_2-10; TT045_21-13; TT045_21-2; TT045_21-25; TT045_26-20; TT045_26-25; TT045_26-3; TT045_26-8; TT045_27-14; TT045_27-4; TT045_28-12; TT045_28-2; TT045_28-29; TT045_28-7; TT045_29-1; TT045_4-1; TT045_4-8; TT045_6-2; TT045_6-7; TT045_7-11; TT045_7-13; TT045_7-27; TT045_7-3; TT045_9-2; TT045_9-7; TT049; TT049_18-2; TT049_18-4; TT049_20-2; TT049_20-7; TT049_22-1; TT049_22-12; TT049_22-5; TT049_27-2; TT049_27-27; TT049_27-3; TT049_28-1; TT049_28-6; TT049_29-1; TT049_29-12; TT049_30-2; TT050; TT050_10-3; TT050_1-1; TT050_11-2; TT050_11-4; TT050_12-2; TT050_13-1; TT050_13-9; TT050_14-1; TT050_14-3; TT050_1-5; TT050_15-1; TT050_15-3; TT050_17-1; TT050_19-1; TT050_19-3; TT050_20-1; TT050_2-10; TT050_21-1; TT050_21-3; TT050_22-1; TT050_23-1; TT050_24-1; TT050_24-19; TT050_25-2; TT050_25-4; TT050_26-2; TT050_26-5; TT050_27-2; TT050_2-8; TT050_28-1; TT050_29-2; TT050_30-1; TT050_31-1; TT050_3-2; TT050_3-6; TT050_4-2; TT050_4-7; TT050_5-2; TT050_5-6; TT050_6-2; TT050_6-4; TT050_7-2; TT050_7-3; TT050_8-2; TT050_9-2; TT054; TT054_10-2; TT054_10-6; TT054_1-1; TT054_11-2; TT054_11-5; TT054_11-7; TT054_12-2; TT054_12-6; TT054_1-3; TT054_13-11; TT054_13-27; TT054_13-5; TT054_13-8; TT054_14-4; TT054_14-5; TT054_15-4; TT054_15-9; TT054_16-1; TT054_16-4; TT054_17-1; TT054_17-14; TT054_17-18; TT054_17-8; TT054_18-3; TT054_18-5; TT054_19-1; TT054_19-7; TT054_19-9; TT054_20-4;
    Type: Dataset
    Format: text/tab-separated-values, 2394 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Tatters, Avery O; Schnetzer, Astrid; Fu, Feixue; Lie, Alle Y A; Caron, David A; Hutchins, David A (2013): Short- versus long-term responses to changing CO2 in a coastal dinoflagellate bloom: implications for interspecific competitive interactions and community structure. Evolution, 67(7), 1879-1891, https://doi.org/10.1111/evo.12029
    Publication Date: 2024-04-03
    Description: Increasing pCO2 (partial pressure of CO2 ) in an "acidified" ocean will affect phytoplankton community structure, but manipulation experiments with assemblages briefly acclimated to simulated future conditions may not accurately predict the long-term evolutionary shifts that could affect inter-specific competitive success. We assessed community structure changes in a natural mixed dinoflagellate bloom incubated at three pCO2 levels (230, 433, and 765 ppm) in a short-term experiment (2 weeks). The four dominant species were then isolated from each treatment into clonal cultures, and maintained at all three pCO2 levels for approximately 1 year. Periodically (4, 8, and 12 months), these pCO2 -conditioned clones were recombined into artificial communities, and allowed to compete at their conditioning pCO2 level or at higher and lower levels. The dominant species in these artificial communities of CO2 -conditioned clones differed from those in the original short-term experiment, but individual species relative abundance trends across pCO2 treatments were often similar. Specific growth rates showed no strong evidence for fitness increases attributable to conditioning pCO2 level. Although pCO2 significantly structured our experimental communities, conditioning time and biotic interactions like mixotrophy also had major roles in determining competitive outcomes. New methods of carrying out extended mixed species experiments are needed to accurately predict future long-term phytoplankton community responses to changing pCO2 .
    Keywords: Alexandrium sp.; Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Chromista; Coast and continental shelf; Coulometric titration; Coulometry; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gonyaulax sp.; Growth/Morphology; Growth rate; Identification; Incubation duration; Laboratory experiment; Lingulodinium polyedrum; Myzozoa; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH meter; Phytoplankton; Potentiometric; Prorocentrum micans; Replicate; Salinity; Species; Species interaction; Temperate; Temperature, water; Treatment; Tropical
    Type: Dataset
    Format: text/tab-separated-values, 5616 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-03
    Description: Ocean acidification and greenhouse warming will interactively influence competitive success of key phytoplankton groups such as diatoms, but how long-term responses to global change will affect community structure is unknown. We incubated a mixed natural diatom community from coastal New Zealand waters in a short-term (two-week) incubation experiment using a factorial matrix of warming and/or elevated pCO2 and measured effects on community structure. We then isolated the dominant diatoms in clonal cultures and conditioned them for 1 year under the same temperature and pCO2 conditions from which they were isolated, in order to allow for extended selection or acclimation by these abiotic environmental change factors in the absence of interspecific interactions. These conditioned isolates were then recombined into 'artificial' communities modelled after the original natural assemblage and allowed to compete under conditions identical to those in the short-term natural community experiment. In general, the resulting structure of both the unconditioned natural community and conditioned 'artificial' community experiments was similar, despite differences such as the loss of two species in the latter. pCO2 and temperature had both individual and interactive effects on community structure, but temperature was more influential, as warming significantly reduced species richness. In this case, our short-term manipulative experiment with a mixed natural assemblage spanning weeks served as a reasonable proxy to predict the effects of global change forcing on diatom community structure after the component species were conditioned in isolation over an extended timescale. Future studies will be required to assess whether or not this is also the case for other types of algal communities from other marine regimes.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Cell density; Chaetoceros criophilus; Coast and continental shelf; Community composition and diversity; Coscinodiscus sp.; Coulometric titration; Cylindrotheca fusiformis; Entire community; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Incubation duration; Laboratory experiment; Navicula sp.; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Pseudonitzschia delicatissima; Salinity; Sample ID; South Pacific; Species; Spectrophotometric; Temperate; Temperature; Temperature, water; Thalassiosira sp.; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 10188 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...