GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (2)
  • Oxford Univ. Press  (1)
  • 1
    Publication Date: 2023-02-08
    Description: Neogloboquadrina pachyderma is the dominant species of planktonic foraminifera found in polar waters and is therefore invaluable for paleoceanographic studies of the high latitudes. However, the geochemistry of this species is complicated due to the development of a thick calcite crust in its final growth stage and at greater depths within the water column. We analyzed the in situ Mg/Ca and δ18O in discrete calcite zones using LA‐ICP‐MS, EPMA and SIMS within modern N. pachyderma shells from the highly dynamic Fram Strait and the seasonally isothermal/isohaline Irminger Sea. Here we compare shell geochemistry to the measured temperature, salinity and δ18Osw in which the shells calcified to better understand the controls on N. pachyderma geochemical heterogeneity. We present a relationship between Mg/Ca and temperature in N. pachyderma lamellar calcite that is significantly different than published equations for shells that contained both crust and lamellar calcite. We also document highly variable SIMS δ18O results (up to a 3.3‰ range in single shells) on plankton tow samples which we hypothesize is due to the granular texture of shell walls. Finally, we document that the δ18O of the crust and lamellar calcite of N. pachyderma from an isothermal/isohaline environment are indistinguishable from each other, indicating that shifts in N. pachyderma δ18O are primarily controlled by changes in environmental temperature and/or salinity rather than differences in the sensitivities of the two calcite types to environmental conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: archive
    Format: archive
    Format: archive
    Format: archive
    Format: archive
    Format: archive
    Format: archive
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: Diurnal vertical migration (DVM) is a widespread phenomenon in the upper ocean, but it remains unclear to what degree it also involves passively transported micro- and meso-zooplankton. These organisms are difficult to monitor by in situ sensing and observations from discrete samples are often inconclusive. Prime examples of such ambiguity are planktonic foraminifera, where contradictory evidence for DVM continues to cast doubt on the stability of species vertical habitats, which introduces uncertainties in geochemical proxy interpretation. To provide a robust answer, we carried out highly replicated randomised sampling with 41 vertically resolved plankton net hauls taken within 26 hours in a confined area of 400 km2 in the tropical North Atlantic, where DVM in larger plankton occurs. Manual enumeration of planktonic foraminifera cell density consistently reveals the highest total cell concentrations in the surface mixed layer (top 50 m) and analysis of cell density in seven individual species representing different shell sizes, life strategies and presumed depth habitats reveals consistent vertical habitats not changing over the 26 hours sampling period. These observations robustly reject the existence of DVM in planktonic foraminifera in a setting where DVM occurs in other organisms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Atmospheres, Wiley, 126, ISSN: 0148-0227
    Publication Date: 2021-06-25
    Description: Saharan dust is transported in great quantities from the North African continent every year, most of which is deposited across the North Atlantic Ocean. This dust impacts regional and global climate by affecting the atmospheric radiation balance and altering ocean carbon budgets. However, little research has been carried out on time series of Saharan dust collected in situ across the open Atlantic. Here, we present a unique three-year time series of Saharan dust along a trans-Atlantic transect, sampled by moored surface buoys and subsurface sediment traps. Results show a good correlation between the particle-size distributions of atmospheric dust and the lithogenic particles settling to the deep ocean floor, confirming the aeolian origin of the lithogenic particles intercepted by the subsurface sediment traps, even in the distal western part of the Atlantic Ocean. Dust from both dry and wet deposition as collected by the sediment traps, shows increased deposition fluxes and coarser grain size in summer and/or autumn that coincides with increased precipitation at the sampling sites as derived from satellite data. In contrast, both buoys that sampled dust during transport at sea level show little seasonal variation in both concentration and particle size, as the large amounts of dust transported in summer and early autumn at high altitudes are far above their sampling range. This implies that wet deposition in summer and autumn defines the typical seasonal trends of both the dust deposition flux and its particle-size distribution observed in the sediment traps.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...