GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Environmental health. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (403 pages)
    Edition: 1st ed.
    ISBN: 9781119867357
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Acknowledgments -- Section 1 Geochemistry and Health -- Chapter 1 Medical Geology: Biosphere, Geosphere, and Noosphere Interface -- 1.1 Introduction -- 1.2 Medical Geology in Russia and Newly Independent States (NIS) -- 1.2.1 Linking Geology to Soils - Minerals and HealthCare (Medicine) -- 1.3 Medicinal Value of Metals in Ancient Indian System of Medicine (After Charaka Samhita) -- 1.3.1 Parada (Mercury) -- 1.3.2 Swarna (Gold) Bhasma -- 1.3.3 Rajata (Silver) Bhasma -- 1.3.4 Tamra (Copper) Bhasma -- 1.3.5 Aayasa or Loha (Iron) -- 1.3.6 Mandura Bhasma -- 1.3.7 Naga/Sisaka (lead) Bhasma -- 1.3.8 Vanga/Trapu (tin) Bhasma -- 1.3.9 Pittala (Brass) -- 1.4 Linking Geology to Medicine? -- 1.5 Mineral-Enriched Yeast: Vehicles of Nutrition -- 1.6 Trace Elements/Functional Foods -- 1.6.1 Antidiabetic Plants - The Chromium Connection -- 1.6.2 Lithium -- 1.7 Public Health Informatics (PHI) -- 1.7.1 Medicinal-Mineral Resources -- 1.7.2 Balneotherapy -- 1.8 Use of Clay Minerals in Water Purification -- 1.9 Bathing in Radioactive Monazite-Rich Sands -- Glossary -- References -- Chapter 2 Biogeochemistry: Essential Link Between Geosphere and Biosphere -- 2.1 Introduction to Biogeochemistry -- 2.2 Geosphere: Formation, Evolution, and Isotopes -- 2.2.1 Evolution of the Geosphere -- 2.3 Biosphere -- 2.3.1 Evolution of the Biosphere -- 2.3.2 Bacteria: The Most Primitive Organisms on Earth -- 2.4 Natural Biogeochemistry Cycles (C, N, P, and S) -- 2.4.1 Carbon Cycle -- 2.4.2 Nitrogen Cycle -- 2.4.3 Phosphorous Cycle -- 2.4.4 Sulfur Cycle -- 2.5 Artificial Biogeochemistry Cycles -- 2.6 Soil Biogeochemistry -- 2.6.1 Introduction to Soil Biogeochemistry -- 2.6.2 Soil Formation and Evolution -- 2.6.3 Soil and Ecosystem Balancing. , 2.7 Impact of Natural and Anthropogenic Activities on Biogeochemical Processes -- 2.7.1 Landslide -- 2.7.2 Volcanic Eruptions -- 2.7.3 Industrial Activities -- 2.7.4 Intensive Agriculture -- 2.7.5 Greenhouse Gas Emissions -- 2.7.6 Ocean Acidification -- 2.8 Conclusion and Future Perspectives -- References -- Chapter 3 Geochemical Release and Environmental Interfaces -- 3.1 Introduction -- 3.1.1 Mineral Release -- 3.1.2 Gas Release -- 3.2 Environmental Interfaces -- 3.2.1 Atmospheric Aerosol Interface -- 3.2.2 Nanomaterial Interfaces -- 3.2.3 Effect of Geochemical Release on Environmental Interfaces -- 3.2.4 Benefits of Geochemical Releases on Environment -- References -- Section 2 Dust Storms and Health -- Chapter 4 Minerogenic Dust and Human Health -- 4.1 Introduction -- 4.2 Tree "Bark Pockets" as Pollution Time Capsules -- 4.3 Asbestosis -- 4.4 Phosphogypsum Dust (Anthropogenic Radioactivity) -- 4.5 Silicosis -- 4.6 Volcanic Ash -- 4.7 Dust and Gases from Volcanic Eruptions -- 4.8 Artisanal and Small-Scale Gold Mining Activities in Nigeria -- Acknowledgments -- References -- Chapter 5 Silicosis and Asbestosis -- 5.1 Introduction -- 5.2 Silicosis -- 5.2.1 Structure and Properties of Silica -- 5.2.2 Environmental Occurrence of Silica -- 5.2.3 Industrial Applications and Human Exposure to Silica -- 5.2.4 Silicosis and Its Pathologic Mechanisms -- 5.2.5 Prevention and Treatment of Silicosis -- 5.3 Asbestosis -- 5.3.1 Structure of Asbestos -- 5.3.2 Properties of Asbestos -- 5.3.3 Sources of Asbestos Fiber -- 5.4 Industrial Application -- 5.5 Exposure to Mineral Fiber -- 5.6 Disease Description and Mechanisms of Action -- 5.7 Prevention and Treatment Plans -- References -- Chapter 6 Radon and Health -- 6.1 Introduction -- 6.2 Radon Chemistry -- 6.3 Sources of Radon -- 6.4 Radon Measurement Units -- 6.5 Safe Radon Levels -- 6.6 Radon Detection Methods. , 6.7 Detection of Radon and Radon Decay Products by Grab Sampling Method -- 6.7.1 Ionization Chambers -- 6.7.2 Scintillation Cell Method -- 6.7.3 Liquid Scintillation Counting (LSC) -- 6.7.4 Gross Alpha Counting -- 6.7.5 Alpha Spectrometry -- 6.8 Detection of Radon and Radon Decay Products by Integrated Measurement Methods -- 6.8.1 Solid-State Nuclear Track Detector -- 6.8.2 Activated Carbon Method -- 6.8.3 Electret-Ionization Chamber (EIC) Method -- 6.8.4 Solid-State Detection Monitors -- 6.9 Detection of Radon and Radon Decay Products by Continuous Monitors -- 6.9.1 Continuous Scintillation Cell Monitor -- 6.9.2 Passive Continuous Radon Monitor -- 6.9.3 Continuous Radon Monitors for Radon Progeny -- 6.10 Health Effects of Radon -- 6.10.1 Lung Cancer -- 6.10.2 Leukemia -- 6.10.3 Skin Cancer -- 6.10.4 Circulatory System Diseases (CSDs) -- 6.11 Prevention and Mitigation of Radon in Indoor Settings -- 6.12 Conclusion -- References -- Section 3 Medical Geology of the Hydrosphere -- Chapter 7 Water-Rock Interactions: Mineral Dissolution -- 7.1 Introduction -- 7.2 Congruent (Simple) Dissolution -- 7.2.1 Simple Dissolution of Minerals in Groundwater System -- 7.2.2 Saturation Index -- 7.2.3 Chemical Evolution of Groundwater Controlled by Congruent Dissolution -- 7.3 Incongruent Dissolution -- 7.3.1 Incongruent Dissolution in Aquifer Systems -- 7.3.2 Weathering of Silicates -- 7.3.3 Consequence of Incongruent Dissolution of Silicates -- 7.4 Reductive Dissolution of Fe(III) Oxides -- 7.4.1 Fe(III) Oxide Mineral and Reductive Dissolution -- 7.4.2 Cause of Reductive Dissolution of Fe(III) Oxides -- 7.4.3 Consequence of Reductive Dissolution of Fe(III) Oxides -- 7.5 Conclusion Remarks -- Acknowledgments -- References -- Chapter 8 Water Hardness and Health -- 8.1 Water Hardness - Overview -- 8.2 Origin of Water Hardness. , 8.3 Water Hardness and Health Influence - Background -- 8.3.1 Cardiovascular Diseases and Water Hardness -- 8.3.2 Prevention Mechanism of CVD by Water Hardness -- 8.3.3 Kidney Disease and Water Hardness -- 8.3.4 Protective Competence of the Hard Water Against Cancer Development -- 8.3.5 Calcium and Magnesium Intake and Other Health Effects -- 8.3.6 Physiological Significance of Magnesium -- 8.3.7 Health Drawbacks of Water Hardness -- 8.4 Mitigation of Water Hardness -- 8.5 Conclusions -- References -- Chapter 9 Geochemistry of Fluoride in the Environment and Human Health -- 9.1 Introduction -- 9.2 Geochemistry of Fluoride -- 9.3 Fluoride in Rocks -- 9.4 Fluoride in Soil -- 9.5 Fluoride in Plants -- 9.6 Fluoride in Natural Water -- 9.7 Fluoride and Human Health -- 9.8 Conclusions -- Acknowledgments -- References -- Chapter 10 Iodine Essentiality for Human Health: Sources, Toxicity, Biogeochemistry, and Strategies for Alleviation of Iodine Deficiency Disorders -- 10.1 Introduction -- 10.2 Iodine Essentiality for Human Health -- 10.3 Role of Iodine in Thyroid Function -- 10.4 Iodine Sources in Biogeosphere and Hydrosphere -- 10.5 Iodine in Diets -- 10.6 Iodine in Watersheds -- 10.7 Iodine Deficiency Disorders -- 10.8 Biogeochemical Cycling of Iodine -- 10.9 Conclusions -- Acknowledgments -- References -- Chapter 11 Understanding Nexus Between Hydrogeochemical Cycling and Medical Geology of Arsenic -- 11.1 Introduction -- 11.2 What Is Medical Geology? -- 11.3 Arsenic Release Mechanisms -- 11.4 Exposure and Effects of As on Humans and Plants -- 11.5 Conclusions and Outlooks -- Acknowledgments -- References -- Chapter 12 Potentially Toxic Metals and Health -- 12.1 Introduction -- 12.2 Toxic Metals and Their Resources -- 12.2.1 Arsenic (As) -- 12.2.2 Cadmium (Cd) -- 12.2.3 Chromium (Cr) -- 12.2.4 Lead (Pb) -- 12.3 The Effects of Toxic Metals on Human Health. , 12.4 Toxic Metal Removal with Biochar Adsorption -- 12.5 Conclusions and Recommendations -- References -- Section 4 Medical Pedology: Health Effects from Soils and Sediments -- Chapter 13 Dynamics of Trace Element Bioavailability in Soil: Agronomic Enhancement and Risk Assessment -- 13.1 Introduction -- 13.2 Bioavailability of Trace Elements in Contaminated Soils -- 13.3 Case Study -- 13.3.1 Experimental Design -- 13.3.2 Target Hazard Quotient -- 13.4 Uptake of Trace Elements: Change in Bioavailability -- 13.5 Trace Element Accumulation in Vegetable/Fodder -- 13.6 Human Health Risk Assessment -- 13.7 Conclusion -- References -- Chapter 14 Geochemical Provenance of Metalloids and Their Release: Implications on Medical Geology -- 14.1 Medical Geology of Metalloids -- 14.2 Role of Natural Geologic Materials and Processes on Releasing of Metalloids to the Environment -- 14.2.1 Release to Hydrosphere -- 14.2.2 Release to Lithosphere -- 14.2.3 Release to Atmosphere -- 14.2.4 Mechanism of the Release of the Metalloids to the Environment -- 14.3 Bioavailability and Bioaccessibility of Metalloids -- 14.3.1 Soil -- 14.3.2 Aquatic Environment -- 14.3.3 Atmosphere -- 14.4 Human Exposure of Metalloids -- 14.5 Toxicity of Metalloids to Human and Prevention -- 14.6 The Risk Management Strategies to Reduce the Bioavailable of Metalloids in the Environment -- 14.6.1 Remediation of Metalloids from the Water Bodies -- 14.6.2 Remediation of Metalloids from the Soil Matrices -- 14.7 Summary and Future Development -- References -- Chapter 15 Cobalt and Copper Deficiency and Molybdenosis -- 15.1 Introduction -- 15.2 Role of Co, Cu, and Mo as Micronutrients -- 15.2.1 Role of Cu as a Micronutrient in Plants -- 15.2.2 Role of Cu as a Micronutrient in Animals -- 15.2.3 Role of Co as a Micronutrient in Plants -- 15.2.4 Role of Co as a Micronutrient in Animals. , 15.2.5 Co and Cu Micro-Deficiency.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Microplastics-Environmental aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (531 pages)
    Edition: 1st ed.
    ISBN: 9781119879527
    DDC: 363.738
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Section I Single Use Plastics -- Chapter 1 Scientometric Analysis of Microplastics across the Globe -- 1.1 Introduction -- 1.2 Materials and Methods -- 1.3 Results and Discussion -- 1.3.1 Trends in Scientific Production and Citations -- 1.3.2 Top Funding Agencies -- 1.3.3 Top 10 Global Affiliations -- 1.3.4 Top Countries -- 1.3.5 Top 10 Databases and Journals -- 1.3.6 Top 10 Published Articles -- 1.3.7 Top 10 Author Keywords and Research Areas -- 1.4 Conclusion -- Acknowledgments -- References -- Chapter 2 Microplastic Pollution in the Polar Oceans - A Review -- 2.1 Introduction -- 2.1.1 Plastics -- 2.1.2 Plastic Pollution -- 2.1.3 Microplastics -- 2.1.4 Importance of Microplastic Pollution in the Polar Oceans -- 2.2 Polar Regions -- 2.2.1 General -- 2.2.2 Sea Ice -- 2.2.3 Water -- 2.2.4 Sediments -- 2.2.5 Biota -- 2.3 Future Perspectives -- 2.4 Conclusions -- References -- Chapter 3 Microplastics - Global Scenario -- 3.1 Introduction -- 3.2 Environmental Issues of Plastic Waste -- 3.3 Coprocessing of Plastic Waste in Cement Kilns -- 3.3.1 Cost of Plants to Convert Plastic Waste to Refused-Derived Fuel (RDF) -- 3.4 Disposal of Plastic Waste Through Plasma Pyrolysis Technology (PPT) -- 3.4.1 Merits of PPT -- 3.5 Constraints on the Use of Plastic Waste Disposal Technologies -- 3.6 Alternate to Conventional Petro-based Plastic Carry Bags and Films -- 3.7 Improving Waste Management -- 3.7.1 Phasing Out Microplastics -- 3.7.2 Promoting Research into Alternatives -- 3.7.3 Actions and Resolutions -- References -- Chapter 4 The Single-Use Plastic Pandemic in the COVID-19 Era -- 4.1 Introduction -- 4.2 Materials and Methods -- 4.2.1 Data Sources -- 4.2.2 Estimation of the General population's Daily Use of Face Masks. , 4.2.3 Estimation of the Daily Amount of Medical Waste in Hospitals -- 4.3 Trends in Production and Consumption of SUPs during the Pandemic -- 4.3.1 Personal Protective Equipment -- 4.3.2 Packaging SUPs -- 4.3.2.1 Trends in Plastic Waste Generation, Management, and Environmental Fate during the COVID-19 Era -- 4.4 SUP Waste from the Pandemic -- 4.4.1 Environmental Impacts from SUP Waste -- 4.4.2 Management of SUP Waste -- 4.5 Conclusions and Future Prospects -- References -- Section II Microplastics in the Aerosphere -- Chapter 5 Atmospheric Microplastic Transport -- 5.1 The Phenomenon of Microplastic Transport -- 5.2 Factors Affecting Microplastic Transport -- 5.2.1 Types of MPs -- 5.2.2 Characteristics and Sources of Microplastics Emitters -- 5.2.3 Meteorological Conditions -- 5.2.4 Altitude and Surface Roughness -- 5.2.5 Microplastic Deposition Processes in the Ocean -- 5.2.6 Microplastics Deposition Processes in the Air -- 5.3 Microplastic Transport Modelling -- 5.3.1 Eulerian Method -- 5.3.2 Lagrangian Method -- References -- Chapter 6 Microplastics in the Atmosphere and Their Human and Eco Risks -- 6.1 Introduction -- 6.2 Microplastics in the Atmosphere -- 6.2.1 Size, Shapes, and Colours -- 6.2.2 Chemical Composition -- 6.2.3 Sources of Microplastics -- 6.2.4 Spatial Distribution and Rate of Deposition -- 6.2.5 Effects of Climatic Conditions on MP Distribution -- 6.2.6 Transport Pathways -- 6.2.7 Pollutants Associated with MPs -- 6.3 Impact of Microplastics on Human Health and the Eco Risk -- 6.3.1 Impact on Human Health -- 6.3.2 Eco Risk -- 6.4 Strategies to Minimise Atmospheric MPs through Future Research -- 6.5 Conclusion -- Acknowledgements -- References -- Chapter 7 Sampling and Detection of Microplastics in the Atmosphere -- 7.1 Introduction -- 7.2 Classification -- 7.3 Sampling Microplastics -- 7.3.1 Sampling Airborne Microplastics. , 7.3.2 Sediment -- 7.3.3 Water -- 7.3.4 Biota -- 7.4 Sample Preparation -- 7.5 Detection and Characterisation of MPs in the Atmosphere -- 7.5.1 Microscopic Techniques for Detecting MPs -- 7.5.1.1 Stereomicroscopy -- 7.5.1.2 Fluorescence Microscopy -- 7.5.1.3 Polarised Optical Microscopy (POM) -- 7.5.1.4 Scanning Electron Microscopy (SEM) -- 7.5.1.5 Atomic Force Microscopy (AFM) -- 7.5.1.6 Hot Needle Technique -- 7.5.1.7 Digital Holography -- 7.5.2 Spectroscopic Techniques for Analysing MPs -- 7.5.2.1 Fourier Transform Infrared (FTIR) Spectroscopy -- 7.5.2.2 Raman Spectroscopy -- 7.5.3 Thermal Analysis -- 7.5.3.1 Differential Scanning Calorimetry (DSC) -- 7.5.3.2 Thermogravimetric Analysis (TGA) -- 7.5.3.3 Pyrolysis-Gas Chromatography-Mass Spectrometry (Pyr-GC-MS) -- 7.6 Conclusion -- Funding -- References -- Chapter 8 Sources and Circulation of Microplastics in the Aerosphere - Atmospheric Transport of Microplastics -- 8.1 Introduction -- 8.1.1 Occurrence and Abundance of Atmospheric MP -- 8.1.2 Plastic Polymers and Their Properties -- 8.1.3 Sources and Pathways of MPs in the Atmosphere -- 8.2 Temporal and Spatial Trends in MP Accumulation -- 8.2.1 Roadside MPs -- 8.2.2 Agricultural Fields and Soil -- 8.2.3 Wastewater and Sludge -- 8.2.4 Ocean/Marine Debris -- 8.3 Formation of MPs -- 8.3.1 Physical Weathering -- 8.3.2 Chemical Weathering -- 8.3.3 Biodegradation -- 8.3.4 Photo-thermal Oxidation -- 8.3.5 Thermal Degradation -- 8.4 Atmospheric Circulation, Transport, Suspension, and Deposition -- 8.4.1 Wet Deposition -- 8.4.2 Dry Deposition -- 8.4.3 Urban Dust -- 8.4.4 Suspended Atmospheric MPs -- 8.5 Atmospheric Chemistry of MPs -- 8.6 Predicting MP Dispersion and Transport -- 8.7 Eco-Environmental Impacts -- 8.7.1 Impacts on Human and Wildlife Health -- 8.7.2 Impacts on the Climate -- 8.8 Future Perspectives -- References. , Section III Microplastics in the Aquatic Environment -- Chapter 9 Interaction of Chemical Contaminants with Microplastics -- 9.1 Introduction -- 9.2 Interactions -- 9.3 Mechanisms -- 9.3.1 Interactions between Organic Contaminants and Microplastics -- 9.3.2 Interactions between Heavy Metals and Microplastics -- 9.3.3 Kinetics of the Sorption Process -- 9.3.4 Pseudo-First-Order Model -- 9.3.5 Pseudo-Second-Order Model -- 9.3.6 Intraparticle Diffusion Model -- 9.3.7 Film Diffusion Model -- 9.3.8 Isotherm Models -- 9.3.9 Langmuir Model -- 9.3.10 Freundlich Model -- 9.4 Environmental Burden of Microplastics -- 9.5 Future Approaches -- References -- Chapter 10 Microplastics in Freshwater Environments -- 10.1 Introduction -- 10.2 Microplastics in Rivers and Tributaries -- 10.3 Microplastics in Lakes -- 10.4 Microplastics in Groundwater Sources -- 10.5 Microplastics in Glaciers and Ice Caps -- 10.6 Microplastics in Deltas -- 10.7 Conclusion -- Acknowledgment -- References -- Chapter 11 Microplastics in Landfill Leachate: Flow and Transport -- 11.1 Plastics and Microplastics -- 11.2 Microplastics in Landfill Leachate -- 11.3 Summary -- Acknowledgments -- References -- Chapter 12 Microplastics in the Aquatic Environment - Effects on Ocean Carbon Sequestration and Sustenance of Marine Life -- 12.1 Introduction -- 12.2 Microplastics in the Aquatic Environment -- 12.2.1 Major Sources -- 12.2.2 Chemical Nature and Distribution Processes -- 12.2.2.1 Chemical Nature -- 12.2.2.2 Distribution Processes -- 12.3 Microplastics and Ocean Carbon Sequestration -- 12.3.1 Ocean Carbon Sequestration -- 12.3.2 Effect of Microplastics on Ocean Carbon Sequestration -- 12.3.2.1 Effect on Phytoplankton Photosynthesis and Growth -- 12.3.2.2 Effect on Zooplankton Development and Reproduction -- 12.3.2.3 Effect on the Marine Biological Pump -- 12.4 Microplastics and Marine Fauna. , 12.4.1 Effects on Corals -- 12.4.2 Effects on Fisheries and Aquaculture -- 12.4.2.1 Shrimp -- 12.4.2.2 Oysters and Mussels -- 12.4.2.3 Fish -- 12.4.3 Effects on Sea Turtles and Sea Birds -- 12.4.4 Effects on Marine Mammals -- 12.5 Microplastic Pollution, Climate Change, and Antibiotic Resistance - A Unique Trio -- 12.6 Conclusion and Future Perspectives -- Acknowledgments -- References -- Section IV Microplastics in Soil Systems -- Chapter 13 Entry of Microplastics into Agroecosystems: A Serious Threat to Food Security and Human Health -- 13.1 Introduction -- 13.2 Sources of Microplastics in Agroecosystems -- 13.2.1 Plastic Mulching -- 13.2.2 Plastic Use in Modern Agriculture -- 13.2.3 Application of Sewage Sludge/Biosolids -- 13.2.4 Compost and Fertilizers -- 13.2.5 Wastewater Irrigation -- 13.2.6 Landfill Sites -- 13.2.7 Atmospheric Deposition -- 13.2.8 Miscellaneous Sources -- 13.3 Implications of Microplastic Contamination on Agroecosystems -- 13.3.1 Implications for Soil Character -- 13.3.2 Implications for Crop Plants and Food Security -- 13.4 Human Health Risks -- 13.5 Knowledge Gaps -- 13.6 Conclusion and Future Recommendations -- Acknowledgments -- References -- Chapter 14 Migration of Microplastic-Bound Contaminants to Soil and Their Effects -- 14.1 Introduction -- 14.2 Microplastics as Sorbing Materials for Hazardous Chemicals -- 14.3 Types of Microplastic-Bound Contaminants in Soils -- 14.3.1 Heavy Metals and Metalloids - Inorganic Contaminants Adsorbed to MPs -- 14.3.2 Persistent Organic Pollutants, Pharmaceuticals, Antibiotics, Pesticides, and Other Organic Contaminants Adsorbed to MPs -- 14.4 Effects of Exposure and Co-exposure in Soil - Consequences of Contaminant Sorption for MP Toxicity and Bioaccumulation -- 14.5 Microplastic-Bound Contaminants in Soils as Potential Threats to Human Health -- 14.6 Conclusions -- References. , Chapter 15 Plastic Mulch-Derived Microplastics in Agricultural Soil Systems.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Trace elements -- Environmental aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (809 pages)
    Edition: 1st ed.
    ISBN: 9780470355091
    DDC: 613.2/85
    Language: English
    Note: Intro -- TRACE ELEMENTS AS CONTAMINANTS AND NUTRIENTS -- CONTENTS -- Foreword -- Preface -- Acknowledgments -- Contributors -- 1 The Biological System of Elements: Trace Element Concentration and Abundance in Plants Give Hints on Biochemical Reasons of Sequestration and Essentiality -- 1. Introduction -- 1.1 Analytical Data and Biochemical Functions -- 2. Materials and Methods -- 2.1 Data Sets of Element Distribution Obtained in Freeland Ecological Studies: Environmental Analyses -- 2.2 Conversion of Data Using Sets of Elements with Identical BCF Values -- 2.3 Definition and Derivation of the Electrochemical Ligand Parameters -- 3. Results -- 3.1 Abundance Correlations Among Essential and Nonessential Elements -- 3.2 (Lack of) Correlation and Differences in Biochemistry -- 3.3 Implication for Biomonitoring: Corrections by Use of Electrochemical Ligand Parameters and BCF-Defined Element Clusters -- 4. Discussion -- 5. Conclusion -- References -- 2 Health Implications of Trace Elements in the Environment and the Food Chain -- 1. Trace Elements Important in Human Nutrition -- 2. The Main Trace Elements: Their Roles and Effects -- 2.1 Arsenic -- 2.2 Cadmium -- 2.3 Chromium -- 2.4 Cobalt -- 2.5 Copper -- 2.6 Fluorine -- 2.7 Iodine -- 2.8 Iron -- 2.9 Lead -- 2.10 Manganese -- 2.11 Mercury -- 2.12 Molybdenum -- 2.13 Nickel -- 2.14 Selenium -- 2.15 Silicon -- 2.16 Tin -- 2.17 Vanadium -- 2.18 Zinc -- 2.19 Hypersensitivity Issues -- 3. Issues of Environmental Contamination of the Food Chain -- 4. Legislation Concerning Trace Elements -- 4.1 Elements in Soils and the Environment -- 4.2 Elements in Foods -- 4.3 Supplementation of Minerals to Foods -- 5. Food Chain Safety -- 5.1 Soil and Plants -- 5.2 Animal Products -- 5.3 Geological Correlates -- 5.4 Intentional Contamination -- 5.5 Availability of Minerals -- 6. Biofortification -- 7. Concluding Remarks. , Acknowledgments -- References -- 3 Trace Elements in Agro-ecosystems -- 1. Introduction -- 2. Biogeochemistry of Trace Elements in Agro-ecosystems -- 2.1 Input and Contamination -- 2.2 Translation, Translocation, Fate, and Their Implication to Phytoremediation -- 3. Benefit, Harmfulness, and Healthy Implication of Trace Elements -- 3.1 Benefit to Plant/Crop -- 3.2 Harmfulness to Plant/Crop Physiology -- 3.3 Soil Environmental Quality Standards and Background of Trace Elements -- 4. Phytoremediation of Trace Element Contamination -- 4.1 Basic Mechanisms of Phytoremediation -- 4.2 Research Progress of Phytoextraction -- 4.3 Discussion on Agro-Strengthen Measurements -- Acknowledgments -- References -- 4 Metal Accumulation in Crops-Human Health Issues -- 1. Introduction -- 2. The Concept of Ionomics and Nutriomics in the Plant Cell -- 3. The Trace Element Deficiencies in the Developing World -- 4. Improvement of Trace Metal Content in Plants Through Genetic Engineering -- 5. Genetic Engineering Approaches to Improve the Bioavailability of Iron and Zinc in Cereals -- 6. Decreasing the Content of Inhibitors of Trace Element Absorption -- 7. Increasing the Synthesis of Promoter Compounds -- 8. Conclusions -- Acknowledgments -- References -- 5 Trace Elements and Plant Secondary Metabolism: Quality and Efficacy of Herbal Products -- 1. Coevolutionary Aspects -- 2. Environmental Factors and Active Principles -- 3. Influence of Macronutrients -- 4. Influence of Micronutrients -- 5. Trace Elements as Elicitors of Active Principles -- 6. Trace Elements as Active Components of Herbal Drugs -- 7. Trace Elements in Herbal Drugs: Regulatory Aspects -- Acknowledgments -- References -- 6 Trace Elements and Radionuclides in Edible Plants -- 1. Introduction -- 2. Plant Uptake and Translocation of Trace Elements. , 3. Distribution and Accumulation of Trace Elements in Plants -- 4. Vegetables, Fruit, and Berries -- 5. Cereals and Grains -- 5.1 Cadmium in Wheat -- 5.2 Arsenic in Rice -- 6. Aquatic Plants -- 7. Fungi -- 8. How to Cope with Low or High Levels of Trace Elements -- References -- 7 Trace Elements in Traditional Healing Plants-Remedies or Risks -- 1. Introduction -- 2. The Indigenous System of Medicine -- 3. Herbal Drug Industry -- 4. Notable Medicinal and Aromatic Plants that have the Inherent Ability of Accumulating Toxic Trace Elements -- 5. Cleanup of Toxic Metals from Herbal Extracts -- 6. Polyherbal Preparation and Traditional Medicine Pharmacology -- 7. Conclusions -- References -- 8 Biofortification: Nutritional Security and Relevance to Human Health -- 1. Introduction -- 2. Bioavailablity of Micronutrients -- 3. Social Acceptability of Biofortified Crops -- 4. Development and Distribution of the New Varieties -- 5. Selected Examples of Biofortified Crops Targeted by Harvestplus in Collaboration with a Consortium of International Partners -- 5.1 Rice -- 5.2 Wheat -- 5.3 Maize -- 5.4 Beans -- 5.5 Brassica juncea (Indian Mustard) -- 6. Selenium-Fortified Phytoproducts -- 7. Sources of Selenium in Human Diet -- 8. Selenium (Se) and Silica (Si) Management in Soils by Fly Ash Amendment -- 9. Chromium for Fortification Diabetes Management -- 10. Silica Management in Rice-Beneficial Functions -- 11. Conclusions -- Acknowledgments and Disclaimer -- References -- 9 Essentiality of Zinc for Human Health and Sustainable Development -- 1. Biogeochemical Cycling of Zinc -- 2. Distribution of Zinc Deficiency in Soils on a Global Level -- 3. Zinc Intervention Programs -- 4. Zinc-Transporting Genes in Plants -- 5. Addressing Zinc Deficiency Without Zinc Fortification -- 6. Zinc Deficiency is a Limitation to Plant Productivity -- Acknowledgments and Disclaimer. , References -- 10 Zinc Effect on the Phytoestrogen Content of Pomegranate Fruit Tree -- 1. Introduction -- 2. Materials and Methods -- 3. Results and Discussions -- 3.1 Pomegranate Yield -- 3.2 Pomegranate Zinc Content -- 3.3 Phytoestrogen Content -- 4. Summary and Conclusions -- Acknowledgments -- References -- 11 Iron Bioavailability, Homeostasis through Phytoferritins and Fortification Strategies: Implications for Human Health and Nutrition -- 1. Introduction -- 2. Iron Importance -- 3. Iron Toxicity -- 4. Interactions with Other Metals -- 5. Iron Acquisition by Plants -- 6. Translocation of Iron in Plants -- 7. Iron Deficiency in Humans -- 8. Amelioration of Iron Deficiencies -- 9. Ferritin -- 10. Ferritin Structure -- 11. Mineral Core Formation -- 12. Ferritin Gene Family and Regulation -- 13. Developmental Regulation -- 14. Role of Ferritin -- 15. Metal Sequestration by Ferritin: Health Implications -- 16. Overexpression of Ferritin -- Acknowledgments -- References -- 12 Iodine and Human Health: Bhutan's Iodine Fortification Program -- 1. Role of Iodine -- 2. Iodine Deficiency Disorders (IDD) -- 3. Sources of Iodine -- 4. Recommended Intake of Iodine -- 5. Indicators for Assessment of Iodine Status and Exposure -- 6. Control of IDD -- 7. IDD Scenario in Bhutan: Past and Present -- 8. Toward IDD Elimination in Bhutan: Highlights of the IDD Control Program -- 8.1 IDD Survey -- 9. 1996 Onward: Internal Evaluation of the IDDCP through Cyclic Monitoring -- 10. Conclusion -- References -- 13 Floristic Composition at Kazakhstan's Semipalatinsk Nuclear Test Site: Relevance to the Containment of Radionuclides to Safeguard Ecosystems and Human Health -- 1. Introduction -- 2. Kazakhstan: Semipalatinsk Nuclear Test Site -- 3. Flora of Nuclear Test Site -- 4. Fodder Plants -- 5. Conclusions -- Acknowledgments and Disclaimer -- References. , 14 Uranium and Thorium Accumulation in Cultivated Plants -- 1. Introduction: Uranium and Thorium in the Environment -- 2. Uranium and Thorium in Soil -- 2.1 Soil Characteristics Affecting Uranium and Thorium Plant Uptake -- 2.2 Effects of Soil Amendments -- 3. Radionuclides in Plants -- 3.1 Accumulation of Uranium and Thorium in Plant Roots -- 3.2 Differences in U and Th Uptake by Different Plant Species (in the example of wheat Triticum aestivum and Rye Secale cereale) -- 3.3 Effects of U and Th Bioaccumulation on Distribution of Other Elements in Rye and Wheat -- 3.4 Relationships Between U and Th in Soils and in Different Plant Parts -- 3.5 Phytotoxicity of U and Th -- 3.6 Effects of U and Th on Leaf Chlorophyll Content and the Rhizosphere Microorganisms -- 3.7 Temporal Variations of U and Th in Plants -- 3.8 Effects of Thorium on a Plant During Initial Stages of the Plant Growth -- 4. Potential Health Effects of Exposure to U and Th -- References -- 15 Exposure to Mercury: A Critical Assessment of Adverse Ecological and Human Health Effects -- 1. Human Health Effects -- 1.1 Introduction -- 1.2 Sources and Cycling of Mercury to the Global Environment -- 1.3 Methylmercury -- 2. Adverse Ecological Effects -- 2.1 Laboratory Toxicity Studies -- 2.2 Biochemical Approaches to Study Bioavailability and Effects -- 2.3 Methods -- 2.4 Results and Discussion -- 3. Case Study: Mercury-Cell Chlor-Alkali Plants as a Major Point Sources of Mercury in Aquatic Environments-The Case of Cinca River, Spain -- 3.1 Introduction -- 3.2 The Case of Mercury Pollution in Cinca River, Spain -- References -- 16 Cadmium as an Environmental Contaminant: Consequences to Plant and Human Health -- 1. Introduction -- 2. Cadmium is Natural -- 3. Past and Present Status -- 3.1 Natural Sources -- 3.2 Technogenic Sources -- 3.3 In Agricultural Soils: Cadmium from Phosphate Fertilizers. , 3.4 Induction of Oxidative Stress as a Fall-Out of Cadmium Toxicity.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Sustainable engineering. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (525 pages)
    Edition: 1st ed.
    ISBN: 9781119678502
    DDC: 628
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Ecological Engineering and Ecosystem Services - Theory and Practice -- 1.1 Introduction -- 1.2 Ecological Engineering: History and Definition -- 1.3 Ecosystem Services: History, Concepts, and Dimensions -- 1.3.1 Sizing Ecosystem Services -- 1.3.2 Agriculture and Ecosystem Services -- 1.4 Final Considerations: Challenges for the Future -- Notes -- References -- Chapter 2 Ecological and Ecosystem Engineering for Economic-Environmental Revitalization -- 2.1 Introduction -- 2.2 Revitalization of Physical/Environmental Factors -- 2.2.1 Low Temperature -- 2.2.2 Limited Soil Drainage and Shallow Rooting Depth -- 2.2.3 Unfavorable Texture and Stoniness -- 2.2.4 Sloping Areas -- 2.2.5 Dryness -- 2.2.6 Waterlogging -- 2.3 Revitalization of Chemical Factors -- 2.3.1 Acidity -- 2.3.2 Heavy Metals and Organic Contaminants -- 2.3.3 Salinity and Sodicity -- 2.4 Economic Revitalization of Degraded Soil Ecosystems -- 2.5 Conclusions -- References -- Chapter 3 Environmental Issues and Priority Areas for Ecological Engineering Initiatives -- 3.1 Introduction -- 3.2 Basic Concepts of Ecological Engineering -- 3.3 Practice and Implication of Ecological Engineering -- 3.4 Priority Areas for Ecological Engineering -- 3.4.1 Coastal Ecosystem Restoration -- 3.4.2 Mangrove Restoration -- 3.4.3 River and Wetland Restoration -- 3.4.4 Ecological Engineering in Soil Restoration and Agriculture -- 3.5 Conclusion -- Notes -- References -- Chapter 4 Soil Meso- and Macrofauna Indicators of Restoration Success in Rehabilitated Mine Sites -- 4.1 Introduction -- 4.2 Restoration to Combat Land Degradation -- 4.3 Mine Rehabilitation -- 4.3.1 Mine Tailings -- 4.3.2 Rehabilitation of Mine Tailings -- 4.3.3 The Challenge of Metal Mine Rehabilitation. , 4.4 Restoration Success Assessment: Monitoring Diversity, Vegetation, and Ecological Processes -- 4.4.1 Monitoring Diversity -- 4.4.2 Vegetation -- 4.4.3 Ecological Processes -- 4.5 Gaps in the Assessment of Restoration Success in Mine Sites -- 4.6 Increasing Restoration Success by Enhancing Soil Biodiversity and Soil Multifunctionality -- 4.7 Using Keystone Species and Ecosystem Engineers in Restoration -- 4.7.1 Earthworms -- 4.7.2 Ants -- 4.7.3 Termites -- 4.7.4 Collembola and Mites -- 4.8 Conclusions and Further Perspective for the Restoration of Metalliferous Tailings -- References -- Chapter 5 Ecological Engineering and Green Infrastructure in Mitigating Emerging Urban Environmental Threats -- 5.1 Dimensions of Ecological Engineering in the Frame of Ecosystem Service Provision -- 5.2 Landfill Afteruse Practices Based on Ecological Engineering and Green Infrastructure -- 5.2.1 Old Landfill Closure and Rehabilitation Procedures -- 5.2.2 Landfill Restoration Examples Around the World -- 5.2.2.1 Conventional Landfill Closure (Campulung, Romania) -- 5.2.2.2 Elbauenpark Including Am Cracauer Anger Landfill (Magdeburg, Germany) -- 5.2.2.3 World Cup Park (Nanjido Landfill, Seoul, South Korea) -- 5.2.2.4 Fudekeng Environmental Restoration Park (Taiwan) -- 5.2.2.5 Hong Kong -- 5.2.2.6 Hyria Landfill Site (Tel Aviv, Israel) -- 5.2.2.7 Valdemingomez Forest Park (Madrid, Spain) -- 5.2.2.8 Freshkills Park - A Mega Restoration Project in the US -- 5.3 Role of Ecological Engineering in Transforming Brownfields into Greenfields -- 5.3.1 UGI Options for Brownfield Recycling -- 5.3.2 Pilot Case: Restoration of a Brownfield to Provide ES - Albert Railway Station (Dresden, Germany) Transformation into the Weißeritz Greenbelt -- 5.4 Green Infrastructures for Mitigating Urban Transport-Induced Threats -- 5.4.1 Transportation Heritage from the Industrial Period. , 5.4.2 The Cases of the Rose Kennedy Greenway and Cheonggyecheon River Restoration -- 5.4.2.1 The Concept: Expressway-to-Greenway Conversion -- 5.4.2.2 Environmental Efficiency and Effectiveness -- 5.4.2.3 Social Impact -- 5.4.2.4 Economic Efficiency -- 5.5 Conclusions -- References -- Chapter 6 Urban Environmental Issues and Mitigation by Applying Ecological and Ecosystem Engineering -- 6.1 Urbanization -- 6.2 Global Trends of Urbanization and Its Consequences -- 6.3 Urban Environmental Issues -- 6.3.1 Physical Urban Environmental Issues -- 6.3.1.1 Urban Heat Islands -- 6.3.1.2 Urban Flooding -- 6.3.1.3 Urban Pollution (Air, Water, Noise) and Waste Management -- 6.3.2 Biological Urban Environmental Issues -- 6.3.2.1 Declining Urban Ecosystem Services Due to Loss of Biodiversity -- 6.3.2.2 Increasing Disease Epidemiology -- 6.4 Ecosystem Engineering -- 6.5 Approaches for Mitigation of Urban Environmental Issues -- 6.5.1 Nature-Based Solutions -- 6.5.1.1 Green Infrastructure (GI) -- 6.5.1.2 Urban Wetlands and Riparian Forests -- 6.5.1.3 Solar Energy -- 6.5.2 Artificial Engineering Approaches -- 6.5.3 Landfill Gas as an Alternative Source of Energy: Waste to Wealth -- 6.5.3.1 Wastewater/Sewage Treatment Plants as Sources of Energy -- 6.5.3.2 Rainwater Harvesting -- 6.5.3.3 Constructed Floating Islands for Water Treatment -- 6.5.3.4 Microgrids -- 6.6 Future Perspective -- Acknowledgments -- References -- Chapter 7 Soil Fertility Restoration, Theory and Practice -- 7.1 Introduction -- 7.2 Materials and Methods -- 7.3 Results -- 7.4 Discussion and Conclusions -- Acknowledgment -- References -- Chapter 8 Extracellular Soil Enzymes Act as Moderators to Restore Carbon in Soil Habitats -- 8.1 Introduction -- 8.2 Soil Organic Matter (SOM) -- 8.3 Soil Organic Carbon (SOC) -- 8.4 Soil Carbon Sequestration -- 8.5 Extracellular Soil Enzymes. , 8.6 Interactive Role of Extracellular Soil Enzymes in Soil Carbon Transformation -- 8.6.1 Cellulase -- 8.6.2 -Glucosidase -- 8.6.3 Invertase -- 8.6.4 Amylase -- 8.6.5 Xylanase -- 8.7 Conclusion -- References -- Chapter 9 Ecological Engineering for Solid Waste Segregation, Reduction, and Resource Recovery - A Contextual Analysis in Brazil -- 9.1 Introduction -- 9.2 Municipal Solid Waste in Brazil -- 9.3 Compostable Waste -- 9.4 Anaerobic Digestion -- 9.5 Recycling -- 9.6 Burning Waste Tires -- 9.7 Energy Recovery -- 9.8 Coprocessing Industrial Waste in Cement Kilns -- References -- Chapter 10 Urban Floods and Mitigation by Applying Ecological and Ecosystem Engineering -- 10.1 Sustainable Ecosystems through Engineering Approaches -- 10.2 Flooding and, Specifically, Urban Flooding as a Problem of Interest -- 10.3 Causes and Impacts of Urban Flooding -- 10.4 Protection Against and Mitigation of Urban Flooding in the Context of Sustainability -- 10.4.1 Living with Floods as a Sustainable Approach -- 10.4.2 Urban Flood Risk Management -- 10.4.3 Integrated and Interactive Flood Management -- 10.4.4 Structural and Nonstructural Measures for Flood Control -- 10.4.5 River and Wetland Restoration -- 10.4.6 Low Impact Development (LID) and Best Management Practices (BMPs) -- 10.5 Conclusions and Future Scope -- References -- Chapter 11 Ecological Engineering and Restoration of Mine Ecosystems -- 11.1 Background and Definitions -- 11.2 Ecological Criteria for Successful Mine Site Restoration -- 11.3 Examples of Reclamation Technology and Afforestation in Mining Areas -- 11.4 Selected Reclamation Practices Versus Mining Extraction and Environmental Conditions -- 11.5 Final Comments and Remarks -- References -- Chapter 12 Ecological Restoration of Abandoned Mine Land: Theory to Practice -- 12.1 Introduction. , 12.2 Integration of Ecology Theory, Restoration Ecology, and Ecological Restoration -- 12.2.1 Disturbance -- 12.2.2 Succession -- 12.2.3 Fragmentation -- 12.2.4 Ecosystem Functions -- 12.2.5 Restoration -- 12.2.6 Reclamation -- 12.2.7 Rehabilitation -- 12.2.8 Regeneration -- 12.2.9 Recovery -- 12.3 Restoration Planning -- 12.4 Components of Restoration -- 12.4.1 Natural Processes -- 12.4.2 Physical and Nutritional Constraints -- 12.4.3 Species Diversity -- 12.5 Afforestation of Mine-Degraded Land -- 12.5.1 Miyawaki Planting Methods -- 12.6 Methods of Evaluating Ecological Restoration Success -- 12.6.1 Criteria for Restoration Success -- 12.6.2 Indicator Parameters of a Restored Ecosystem -- 12.6.3 Soil Quality Index -- 12.7 Development of a Post-Mining Ecosystem: A Case Study in India -- 12.8 Conclusions and Future Research -- References -- Chapter 13 Wetland, Watershed, and Lake Restoration -- 13.1 Introduction -- 13.2 Renovation of Wastewater -- 13.2.1 Physical Methods -- 13.2.2 Chemical Methods -- 13.2.3 Biological Methods -- 13.2.4 Other Methods -- 13.3 Restoration of Bodies of Water -- 13.3.1 Watersheds -- 13.3.2 Wetlands -- 13.3.2.1 Methods of Restoring Wetlands -- 13.3.3 Rivers -- 13.3.4 Lakes -- 13.3.5 Streams -- 13.3.6 Case Studies -- 13.4 Problems Encountered in Restoration Projects -- 13.5 Conclusion -- References -- Chapter 14 Restoration of Riverine Health: An Ecohydrological Approach -Flow Regimes and Aquatic Biodiversity -- 14.1 Introduction -- 14.2 Habitat Ecology -- 14.2.1 Riverine Habitats -- 14.2.2 Linked Ecosystems -- 14.3 Riverine Issues -- 14.3.1 Bank Erosion, Siltation, and Aggradations of Rivers -- 14.3.2 Deforestation in Catchment Areas -- 14.3.3 River Pollution and Invasive Species -- 14.3.4 Fishing Pressure -- 14.3.5 Status of Wetlands (FPLs) -- 14.3.6 Regulated Rivers and Their Impacts. , 14.4 Ecorestoration of River Basins.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...