GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Layer structure (Solids).  (1)
  • Storage batteries.  (1)
  • Newark :John Wiley & Sons, Incorporated,  (2)
Document type
Keywords
Publisher
  • Newark :John Wiley & Sons, Incorporated,  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Layer structure (Solids). ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (403 pages)
    Edition: 1st ed.
    ISBN: 9781119655206
    DDC: 620.11
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 2D Metal-Organic Frameworks -- 1.1 Introduction -- 1.2 Synthesis Approaches -- 1.2.1 Selection of Synthetic Raw Materials -- 1.2.2 Solvent Volatility Method -- 1.2.3 Diffusion Method -- 1.2.3.1 Gas Phase Diffusion -- 1.2.3.2 Liquid Phase Diffusion -- 1.2.4 Sol-Gel Method -- 1.2.5 Hydrothermal/Solvothermal Synthesis Method -- 1.2.6 Stripping Method -- 1.2.7 Microwave Synthesis Method -- 1.2.8 Self-Assembly -- 1.2.9 Special Interface Synthesis Method -- 1.2.10 Surfactant-Assisted Synthesis Method -- 1.2.11 Ultrasonic Synthesis -- 1.3 Structures, Properties, and Applications -- 1.3.1 Structure and Properties of MOFs -- 1.3.2 Application in Biomedicine -- 1.3.3 Application in Gas Storage -- 1.3.4 Application in Sensors -- 1.3.5 Application in Chemical Separation -- 1.3.6 Application in Catalysis -- 1.3.7 Application in Gas Adsorption -- 1.4 Summary and Outlook -- Acknowledgements -- References -- Chapter 2 2D Black Phosphorus -- 2.1 Introduction -- 2.2 The Research on Black Phosphorus -- 2.2.1 The Structure and Properties -- 2.2.1.1 The Structure of Black Phosphorus -- 2.2.1.2 The Properties of Black Phosphorus -- 2.2.2 Preparation Methods -- 2.2.2.1 Mechanical Exfoliation -- 2.2.2.2 Liquid-Phase Exfoliation -- 2.2.3 Antioxidant -- 2.2.3.1 Degradation Mechanism -- 2.2.3.2 Adding Protective Layer -- 2.2.3.3 Chemical Modification -- 2.2.3.4 Doping -- 2.3 Applications of Black Phosphorus -- 2.3.1 Electronic and Optoelectronic -- 2.3.1.1 Field-Effect Transistors -- 2.3.1.2 Photodetector -- 2.3.2 Energy Storage and Conversion -- 2.3.2.1 Catalysis -- 2.3.2.2 Batteries -- 2.3.2.3 Supercapacitor -- 2.3.3 Biomedical -- 2.4 Conclusion and Outlook -- Acknowledgements -- References -- Chapter 3 2D Metal Carbides -- 3.1 Introduction -- 3.2 Synthesis Approaches -- 3.2.1 Ti3C2 Synthesis. , 3.2.2 V2C Synthesis -- 3.2.3 Ti2C Synthesis -- 3.2.4 Mo2C Synthesis -- 3.3 Structures, Properties, and Applications -- 3.3.1 Structures and Properties of 2D Metal Carbides -- 3.3.1.1 Structures and Properties of Ti3C2 -- 3.3.1.2 Structural Properties of Ti2C -- 3.3.1.3 Structural Properties of Mo2C -- 3.3.1.4 Structural Properties of V2C -- 3.3.2 Carbide Materials in Energy Storage Applications -- 3.3.2.1 Ti3C2 -- 3.3.2.2 Ti2C -- 3.3.2.3 V2C -- 3.3.2.4 Mo2C -- 3.3.3 Metal Carbide Materials in Catalysis Applications -- 3.3.3.1 Ti3C2 -- 3.3.3.2 V2C -- 3.3.3.3 Mo2C -- 3.3.4 Metal Carbide Materials in Environmental Management Applications -- 3.3.4.1 Ti3C2 in Environmental Management Applications -- 3.3.4.2 Ti2C in Environmental Management Applications -- 3.3.4.3 V2C in Environmental Management Applications -- 3.3.4.4 Mo2C in Environmental Management Applications -- 3.3.5 Carbide Materials in Biomedicine Applications -- 3.3.5.1 Ti3C2 in Biomedicine Applications -- 3.3.5.2 Ti2C in Biomedicine Applications -- 3.3.5.3 V2C in Biomedicine Applications -- 3.3.5.4 Mo2C in Biomedicine Applications -- 3.3.6 Carbide Materials in Gas Sensing Applications -- 3.3.6.1 Ti3C2 in Gas Sensing Applications -- 3.3.6.2 Ti2C in Gas Sensing Applications -- 3.3.6.3 V2C in Gas Sensing Applications -- 3.3.6.4 Mo2C in Gas Sensing Applications -- 3.4 Summary and Outlook -- Acknowledgements -- References -- Chapter 4 2D Carbon Materials as Photocatalysts -- 4.1 Introduction -- 4.2 Carbon Nanostructured-Based Materials -- 4.2.1 Forms of Carbon -- 4.2.2 Synthesis of Carbon Nanostructured-Based Materials -- 4.3 Photo-Degradation of Organic Pollutants -- 4.3.1 Graphene, Graphene Oxide, Graphene Nitride (g-C3N4) -- 4.3.1.1 Graphene-Based Materials -- 4.3.1.2 Graphene Nitride (g-C3N4) -- 4.3.2 Carbon Dots (CDs) -- 4.3.3 Carbon Spheres (CSs). , 4.4 Carbon-Based Materials for Hydrogen Production -- 4.5 Carbon-Based Materials for CO2 Reduction -- References -- Chapter 5 Sensitivity Analysis of Surface Plasmon Resonance Biosensor Based on Heterostructure of 2D BlueP/MoS2 and MXene -- 5.1 Introduction -- 5.2 Proposed SPR Sensor, Design Considerations, and Modeling -- 5.2.1 SPR Sensor and Its Sensing Principle -- 5.2.2 Design Consideration -- 5.2.2.1 Layer 1: Prism for Light Coupling -- 5.2.2.2 Layer 2: Metal Layer -- 5.2.2.3 Layer 3: BlueP/MoS2 Layer -- 5.2.2.4 Layer 4: MXene (Ti3C2Tx) Layer as BRE for Biosensing -- 5.2.2.5 Layer 5: Sensing Medium (RI-1.33-1.335) -- 5.2.3 Proposed Sensor Modeling -- 5.3 Results Discussion -- 5.3.1 Role of Monolayer BlueP/MoS2 and MXene (Ti3C2Tx) and Its Comparison With Conventional SPR -- 5.3.2 Influence of Varying Heterostructure Layers for Proposed Design -- 5.3.3 Effect of Changing Prism Material and Metal on Performance of Proposed Design -- 5.4 Conclusion -- References -- Chapter 6 2D Perovskite Materials and Their Device Applications -- 6.1 Introduction -- 6.2 Structure -- 6.2.1 Crystal Structure -- 6.2.2 Electronic Structure of 2D Perovskites -- 6.2.3 Structure of Photovoltaic Cell -- 6.3 Discussion and Applications -- 6.4 Conclusion -- References -- Chapter 7 Introduction and Significant Parameters for Layered Materials -- 7.1 Graphene -- 7.2 Phosphorene -- orthorhombic rhombohedral Simple cubic -- semiconductor semimetal metal -- 7.3 Silicene -- 7.4 ZnO -- 7.5 Transition Metal Dichalcogenides (TMDCs) -- 7.6 Germanene and Stanene -- 7.7 Heterostructures -- References -- Chapter 8 Increment in Photocatalytic Activity of g-C3N4 Coupled Sulphides and Oxides for Environmental Remediation -- 8.1 Introduction -- 8.2 GCN Coupled Metal Sulphide Heterojunctions for Environment Remediation -- 8.2.1 GCN and MoS2-Based Photocatalysts. , 8.2.2 GCN and CdS-Based Heterojunctions -- 8.2.3 Some Other GCN Coupled Metal Sulphide Photocatalysts -- 8.3 GCN Coupled Metal Oxide Heterojunctions for Environment Remediation -- 8.3.1 GCN and MoO3-Based Heterojunctions -- 8.3.2 GCN and Fe2O3-Based Heterojunctions -- 8.3.3 Some Other GCN Coupled Metal Oxide Photocatalysts -- 8.4 Conclusions and Outlook -- References -- Chapter 9 2D Zeolites -- 9.1 Introduction -- 9.1.1 What is 2D Zeolite? -- 9.1.2 Advancement in Zeolites to 2D Zeolite -- 9.2 Synthetic Method -- 9.2.1 Bottom-Up Method -- 9.2.2 Top-Down Method -- 9.2.3 Support-Assisted Method -- 9.2.4 Post-Synthesis Modification of 2D Zeolites -- 9.3 Properties -- 9.4 Applications -- 9.4.1 Petro-Chemistry -- 9.4.2 Biomass Conversion -- 9.4.2.1 Pyrolysis of Solid Biomass -- 9.4.2.2 Condensation Reactions -- 9.4.2.3 Isomerization -- 9.4.2.4 Dehydration Reactions -- 9.4.3 Oxidation Reactions -- 9.4.4 Fine Chemical Synthesis -- 9.4.5 Organometallics -- 9.5 Conclusion -- References -- Chapter 10 2D Hollow Nanomaterials -- 10.1 Introduction -- 10.2 Structural Aspects of HNMs -- 10.3 Synthetic Approaches -- 10.3.1 Template-Based Strategies -- 10.3.1.1 Hard Templating -- 10.3.1.2 Soft Templating -- 10.3.2 Self-Templating Strategies -- 10.3.2.1 Surface Protected Etching -- 10.3.2.2 Ostwald Ripening -- 10.3.2.3 Kirkendall Effect -- 10.3.2.4 Galvanic Replacement -- 10.4 Medical Applications of HNMs -- 10.4.1 Imaging and Diagnosis Applications -- 10.4.2 Applications of Nanotube Arrays -- 10.4.2.1 Pharmacy and Medicine -- 10.4.2.2 Cancer Therapy -- 10.4.2.3 Immuno and Hyperthermia Therapy -- 10.4.2.4 Infection Therapy and Gene Therapy -- 10.4.3 Hollow Nanomaterials in Diagnostics and Therapeutics -- 10.4.4 Applications in Regenerative Medicine -- 10.4.5 Anti-Neurodegenerative Applications -- 10.4.6 Photothermal Therapy -- 10.4.7 Biosensors. , 10.5 Non-Medical Applications of HNMs -- 10.5.1 Catalytic Micro or Nanoreactors -- 10.5.2 Energy Storage -- 10.5.2.1 Lithium Ion Battery -- 10.5.2.2 Supercapacitor -- 10.5.3 Nanosensors -- 10.5.4 Wastewater Treatment -- 10.6 Toxicity of 2D HNMs -- 10.7 Future Challenges -- 10.8 Conclusion -- Acknowledgement -- References -- Chapter 11 2D Layered Double Hydroxides -- 11.1 Introduction -- 11.2 Structural Aspects -- 11.3 Synthesis of LDHs -- 11.3.1 Co-Precipitation Method -- 11.3.2 Urea Hydrolysis -- 11.3.3 Ion-Exchange Method -- 11.3.4 Reconstruction Method -- 11.3.5 Hydrothermal Method -- 11.3.6 Sol-Gel Method -- 11.4 Nonmedical Applications of LDH -- 11.4.1 Adsorbent -- 11.4.2 Catalyst -- 11.4.3 Sensors -- 11.4.4 Electrode -- 11.4.5 Polymer Additive -- 11.4.6 Anion Scavenger -- 11.4.7 Flame Retardant -- 11.5 Biomedical Applications -- 11.5.1 Biosensors -- 11.5.2 Scaffolds -- 11.5.3 Anti-Microbial Agents -- 11.5.4 Drug Delivery -- 11.5.5 Imaging -- 11.5.6 Protein Purification -- 11.5.7 Gene Delivery -- 11.6 Toxicity -- 11.7 Conclusion -- Acknowledgement -- References -- Chapter 12 Experimental Techniques for Layered Materials -- 12.1 Introduction -- 12.2 Methods for Synthesis of Graphene Layered Materials -- 12.3 Selection of a Suitable Metallic Substrate -- 12.4 Graphene Synthesis by HFTCVD -- 12.5 Graphene Transfer -- 12.6 Characterization Techniques -- 12.6.1 X-Ray Diffraction Technique -- d D k -- 12.6.2 Field Emission Scanning Electron Microscopy (FESEM) -- 12.6.3 Transmission Electron Microscopy (TEM) -- 12.6.4 Fourier Transform Infrared Radiation (FTIR) -- 12.6.5 UV-Visible Spectroscopy -- 12.6.6 Raman Spectroscopy -- 12.6.7 Low Energy Electron Microscopy (LEEM) -- 12.7 Potential Applications of Graphene and Derived Materials -- 12.8 Conclusion -- Acknowledgement -- References -- Chapter 13 Two-Dimensional Hexagonal Boron Nitride and Borophenes. , 13.1 Two-Dimensional Hexagonal Boron Nitride (2D h-BN): An Introduction.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Storage batteries. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (494 pages)
    Edition: 1st ed.
    ISBN: 9781119714736
    DDC: 621.312424
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Progress in Separators for Rechargeable Batteries -- 1.1 Separator Overview -- 1.2 Polymer Membrane -- 1.2.1 Polyolefin Separators -- 1.2.2 PVDF -- 1.2.3 PTFE -- 1.2.4 PU -- 1.2.5 PVA -- 1.2.6 Cellulose -- 1.2.7 Other Polymer -- 1.3 Non-Woven Fabric Separator -- 1.3.1 PET -- 1.3.2 PAN -- 1.3.3 PVDF -- 1.3.4 PTFE -- 1.3.5 PVA -- 1.3.6 PI -- 1.4 Polymer Electrolyte -- 1.5 Conclusions -- References -- Chapter 2 Pb Acid Batteries -- 2.1 History of Batteries -- 2.2 Primary Batteries -- 2.3 Secondary Batteries -- 2.4 Flow Batteries -- 2.4.1 All Vanadium Redox Flow Batteries (VRBs) -- 2.4.2 Zinc-Bromine Flow Cells -- 2.5 Lead-Acid Batteries -- 2.5.1 Early Applications of Lead-Acid Batteries -- 2.5.2 Comparison With Other Types of Secondary Batteries -- 2.5.3 Electrochemistry of Lead-Acid Batteries -- 2.5.4 Basic Components of Lead-Acid Cells -- 2.5.5 Types of Lead-Acid Batteries -- 2.5.6 Charging -- 2.5.7 Maintenance -- 2.5.8 Failure Modes -- List of Abbreviations -- References -- Chapter 3 Flexible Batteries -- 3.1 Introduction -- 3.2 Battery Types -- 3.2.1 Lead-Acid Battery -- 3.2.2 Nickel Cadmium -- 3.2.3 Nickel/Hydrogen and Nickle/Metal Hydride -- 3.2.4 Lithium-Ion Batteries -- 3.3 Storage Mechanism -- 3.3.1 Flexible Electrode -- 3.3.2 Carbon Base Flexible Electrodes -- 3.4 Graphene Base Flexible Batteries -- 3.5 Metal Oxide-Based Flexible Batteries -- 3.6 Fiber-Shape Designed Flexible Batteries -- 3.7 Natural Fiber Base Flexible Batteries -- 3.8 Flexible Electrolytes -- 3.9 Conclusion -- References -- Chapter 4 Polymer Electrolytes in Rechargeable Batteries -- 4.1 Introduction -- 4.2 Solid Electrolytes for Rechargeable Batteries -- 4.2.1 Solid Oxide Electrolytes -- 4.2.2 Sulfide Solid Electrolytes -- 4.2.3 Inorganic-Organic Hybrid Electrolytes. , 4.2.4 Solid Polymer Electrolytes in Rechargeable Batteries -- 4.3 Polymer-Based Electrolytes -- 4.4 Classification of Polymer-Based Electrolytes -- 4.4.1 Polymer-Salt Complexes -- 4.4.2 Plasticized Polymer Electrolytes -- 4.4.3 Rubbery Electrolytes -- 4.4.4 Solvent-Swollen Polymers -- 4.4.5 Polyelectrolytes -- 4.4.6 Gel Polymer Electrolytes -- 4.4.7 Composite Polymer Electrolytes (CPEs) -- 4.4.8 Ionic Liquid Incorporated Polymer/Gel Electrolytes -- 4.5 Conclusion and Future Prospects -- References -- Chapter 5 Advancement in Electrolytes for Rechargeable Batteries -- 5.1 Introduction -- 5.2 Aqueous Electrolytes -- 5.2.1 Lithium Nitrate -- 5.2.2 Saturated LiCl Electrolyte -- 5.2.3 Aqueous Sodium Salts -- 5.3 Non-Aqueous Electrolytes -- 5.4 Polymer Electrolytes -- 5.4.1 Solid Polymer Electrolytes (SPE) -- 5.4.2 Gel Polymer Electrolytes (GPE) -- 5.5 Ionic Liquids Electrolytes (ILE) -- 5.6 Hybrid Electrolytes -- 5.7 Conclusions -- Acknowledgements -- References -- Chapter 6 Fabrication Assembly Techniques for K-Ion Batteries -- 6.1 Introduction -- 6.2 Battery and Its Types -- 6.3 Ni-Cd Batteries -- 6.4 Li-Ion Batteries -- 6.5 Advantages of Rechargeable Batteries -- 6.6 Disadvantages of Rechargeable Batteries -- 6.7 K-Ion Batteries -- 6.8 Advantages -- 6.9 Disadvantages -- 6.10 Honeycomb Structure of K-Ion Batteries -- 6.10.1 Methods/Synthesis of Potassium Tellurates -- 6.11 Negative Electrode Materials for K-Ion Batteries -- 6.12 K-Ion Batteries Based on Patterned Electrodes -- 6.13 Conclusion -- Acknowledgement -- References -- Chapter 7 Recent Advances in Ni-Fe Batteries as Electrical Energy Storage Devices -- 7.1 Introduction -- 7.2 Structure of Ni-Fe Batteries -- 7.3 Discussion on Electrochemical Parameters of Various Materials for Ni-Fe Batteries -- 7.4 Conclusions -- References -- Chapter 8 Nickel-Metal Hydride (Ni-MH) Batteries -- 8.1 Introduction. , 8.2 History -- 8.3 Invention of the Rechargeable Battery -- 8.4 Metal Hydrides (MH) -- 8.5 Thermodynamics and Crystal Structures of Ni-MH Battery Materials -- 8.5.1 Thermodynamics -- 8.5.2 Crystal Structures of Battery Materials -- 8.5.3 Crystal Structure of AB -- 8.5.3 Crystal Structure of AB5 and AB2 Materials -- 8.5.4 Structure of AB5 Compounds -- 8.5.5 Structure of AB2 Compounds -- 8.5.6 Substitutions of A and B Components in AB5 and AB2 -- 8.5.7 Mg-Based Alloys -- 8.5.8 Rare Earth-Mg-Ni-Based Alloys -- 8.5.9 Ti-V-Based Alloys -- 8.6 Ni-MH Batteries -- 8.7 Mechanism of Ni-MH Batteries -- 8.7.1 Battery Description -- 8.7.2 Principle -- 8.7.3 Negative Electrode -- 8.7.4 Positive Electrode -- 8.7.5 Electrolyte -- 8.7.6 Separator -- 8.8 Materials -- 8.9 Charging Nickel-Based Batteries -- 8.9.1 Guidelines for Charging -- 8.10 Performance -- 8.11 Factors Affecting Life -- 8.11.1 Exposure to Elevated Temperatures -- 8.11.2 Reversal -- 8.11.3 Extended Storage under Load -- 8.11.4 Limiting Mechanisms -- 8.12 Advantages -- 8.13 Applications -- 8.13.1 Electric Vehicles -- 8.13.2 Fuel Cell (FC) EVs -- 8.13.3 Pure EVs -- 8.13.4 Hybrid EVs -- 8.13.5 Applications in Traditional Portable Electronic Devices -- 8.13.5.1 Mobile Phones -- 8.13.5.2 Digital Cameras -- 8.14 Recent Developments and Research Work -- 8.15 Shortcomings -- References -- Chapter 9 Ni-Cd Batteries -- 9.1 Introduction -- 9.2 History -- 9.3 Characteristics -- 9.4 Construction and Working -- 9.5 Types of NiCd Batteries -- 9.6 Memory Effect -- 9.7 Maintenance and Safety -- 9.8 Availability and Cost -- 9.9 Applications -- 9.9.1 Transportation in Hybrid and Electric Vehicles -- 9.9.2 Aircrafts -- 9.9.3 Electronic Flash Units -- 9.9.4 Cordless Applications -- 9.9.5 Motorized Equipment -- 9.9.6 Two Ways Radios -- 9.9.7 Medical Instrumentation -- 9.9.8 Toys -- 9.10 Advantages and Disadvantages. , 9.11 Recycling of NiCd Batteries -- 9.12 Comparison With Other Batteries -- 9.13 Conclusion -- Acknowledgement -- References -- Chapter 10 Ca-Ion Batteries -- 10.1 Introduction -- 10.2 Selection of Anodic and Cathodic Materials -- 10.2.1 Alloy Anodes -- 10.2.1.1 Choice of Cathodes for Calcium-Ion Batteries -- 10.2.1.2 Choice of Anodes for Calcium-Ion Batteries -- 10.3 Electrochemical Arrangement -- 10.4 Electrode Materials -- 10.5 Conclusions and Perspectives -- References -- Chapter 11 Analytical Investigations in Rechargeable Batteries -- 11.1 Introduction -- 11.2 Components of a Battery -- 11.3 Principle of Rechargeable Battery -- 11.4 Aging of Rechargeable Battery -- 11.5 Analysis Techniques Used for Rechargeable Batteries -- 11.5.1 X-Ray Based -- 11.5.2 Neutron Based -- 11.5.3 Optical Analysis Techniques -- 11.5.4 Electron Based -- 11.5.5 Vibrational Analysis Techniques -- 11.5.6 Magnetism Based -- 11.5.7 Gravimetric-Based Analysis Techniques -- 11.6 Conclusion -- References -- Chapter 12 Remediation of Spent Rechargeable Batteries -- 12.1 Introduction -- 12.2 A Brief History of Battery Origin -- 12.3 The Types of Batteries -- 12.3.1 Types of Primary Batteries -- 12.3.1.1 Types of Secondary Batteries -- 12.4 Recharge the Battery -- 12.5 Battery Life -- 12.6 A Lithium-Ion Battery (LIB) -- 12.6.1 Advantages of Li-Ion Batteries -- 12.6.2 Disadvantages of Li-Ion Batteries -- 12.7 Impact of Batteries on Health -- 12.7.1 Protection Against Battery Disadvantages [101] -- 12.8 Mercury (Hg) -- 12.9 Remediation of Spent Rechargeable Batteries -- 12.9.1 Future and Challenges: Nanotechnology in Batteries -- 12.10 Conclusions -- References -- Chapter 13 Classification, Modeling, and Requirements for Separators in Rechargeable Batteries -- Acronyms -- 13.1 Introduction and Area -- 13.2 Separators in Rechargeable Batteries. , 13.3 Classification of Separator in Rechargeable Batteries -- 13.3.1 Nonwoven Separators -- 13.3.2 Microporous Membrane Separators -- 13.3.3 Ion-Exchange Membrane Separators -- 13.3.4 Nanoporous Membrane Separators -- 13.4 Properties of Separator in Rechargeable Batteries -- 13.5 Requirements for Separator in Rechargeable Batteries -- 13.6 Modeling of Separator in Rechargeable Batteries -- 13.7 Results and Discussions -- 13.8 Future Approach -- 13.9 Conclusion -- References -- Chapter 14 Research and Development and Commercialization in Rechargeable Batteries -- 14.1 Introduction -- 14.1.1 Types of Rechargeable Batteries (RBs) and Challenges Faced Towards Practical Applications -- 14.1.1.1 Li-Ion Batteries (LIBs) -- 14.1.1.2 Na and K-Ion Batteries -- 14.1.1.3 Magnesium Rechargeable Batteries (MgRBs) -- 14.1.1.4 Aqueous RBs -- 14.1.1.5 Pb-Acid, Ni-Cd, and Ni-MH Batteries -- 14.1.1.6 Zinc-Ion RBs -- 14.1.1.7 Metal-Air Batteries -- 14.1.1.8 Flexible RBs -- 14.1.2 Nanotechnology Interventions in Rechargeable Batteries -- 14.2 Research and Development in Rechargeable Batteries -- 14.2.1 Zinc Rechargeable Batteries (ZnRBs) -- 14.2.2 Magnesium Rechargeable Batteries (MgRBs) -- 14.2.3 Aqueous RBs and Hybrid Aqueous RBs -- 14.2.4 Li-Based RBs -- 14.3 Commercialization Aspects of Rechargeable Batteries -- 14.4 Future Prospects of RBs -- 14.5 Conclusion -- References -- Chapter 15 Alkaline Batteries -- 15.1 Introduction -- 15.1.1 How Batteries Work -- 15.2 History -- 15.3 Advantages -- 15.4 Disadvantages -- 15.4.1 Internal Resistance -- 15.4.2 Leakage and Damages -- 15.5 Spent ARBs -- 15.6 Classification of ABs -- 15.6.1 Ni/Co Batteries -- 15.6.2 Ni/Ni ARBs -- 15.7 Application of ABs -- 15.8 Conclusion -- Acknowledgements -- References -- Chapter 16 Advances in "Green" Ion-Batteries Using Aqueous Electrolytes -- 16.1 Introduction. , 16.2 Monovalent Ion Aqueous Batteries.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...