GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Zurich :Trans Tech Publications, Limited,
    Keywords: Electronic books.
    Description / Table of Contents: Thermo-Mechanical Properties of Polymer CompositesSpecial topic volume with invited peer reviewed papers only.
    Type of Medium: Online Resource
    Pages: 1 online resource (241 pages)
    Edition: 1st ed.
    ISBN: 9783035732719
    Series Statement: Diffusion Foundations and Materials Application Series ; v.Volume 23
    Language: English
    Note: Intro -- Thermo-Mechanical Properties of Polymer Composites -- Preface -- Table of Contents -- Solvent Transport Phenomenon of Composite -- Natural Fiber Reinforced Synthetic Polymer Composites -- Ceramic Composites for Aerospace Applications -- Effect of Fiber Orientation and Modification on the Behavior of Bamboo Fiber Reinforced UPE/ESOA Hybrid Composite -- Graphene Composites -- Ionic Polymer Metal Composites -- Carbon Nanotube Composites -- Polymer Electrolyte Membranes -- Thermo Mechanical Properties of Carbon Nanotube Composites -- Ionic Transport in Sol-Gel Derived Organic-Inorganic Composites -- Membrane Transport for Gas Separation -- Mass Transport through Composite Asymmetric Membranes -- Transport Phenomenon of Nanoparticles in Animals and Humans -- Sorption and Diffusion Properties of Wood/Plastic Composites -- Graphite/UPE Nanocomposite: Transport, Thermal, Mechanical and Viscoelastic Properties -- Diffusion of Multiwall Carbon Nanotubes into Industrial Polymers -- Diffusion, Transport and Water Absorption Properties of Eco-Friendly Polymer Composites -- Keyword Index -- Author Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Adhesives-Environmental aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (300 pages)
    Edition: 1st ed.
    ISBN: 9781119655084
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Anti-Adhesive Coatings: A Technique for Prevention of Bacterial Surface Fouling -- 1.1 Bacterial Surface Fouling (Biofouling) -- 1.2 Negative Effects of Biofouling by Bacteria on Practical Applications -- 1.3 Anti-Adhesive Coatings for Preventing Bacterial Surface Fouling -- 1.3.1 Hydrophilic Polymers -- 1.3.2 Zwitterionic Polymers -- 1.3.3 Super-Hydrophobic Polymers -- 1.3.4 Slippery Liquid Infused Porous Surfaces (SLIPS) -- 1.3.5 Protein and Glycoprotein-Based Coatings -- 1.4 Bifunctional Coatings With Anti-Adhesive and Antibacterial Properties -- 1.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 2 Lignin-Based Adhesives -- 2.1 Introduction -- 2.2 Native Lignin and Source of Technical Lignin -- 2.2.1 Native Lignin -- 2.2.2 Technical Lignins -- 2.3 Limitations of Technical Lignins -- 2.3.1 Heterogeneity of Technical Lignins -- 2.3.2 Reactivity of Technical Lignins -- 2.4 Lignin Pre-Treatment/Modification for Adhesive Application -- 2.4.1 Physical Pre-Treatment -- 2.4.2 Chemical Modification -- 2.5 Challenges and Prospects -- 2.6 Conclusions -- References -- Chapter 3 Green Adhesive for Industrial Applications -- 3.1 Introduction -- 3.2 Advanced Green Adhesives Categories- Industrial Applications -- 3.2.1 Keta Spire Poly Etherether Ketone Powder Coating -- 3.2.2 Bio-Inspired Adhesive in Robotics Field Application -- 3.2.3 Bio-Inspired Synthetic Adhesive in Space Application -- 3.2.3.1 Micro Structured Dry Adhesive Fabrication for Space Application -- 3.2.4 Natural Polymer Adhesive for Wood Panel Industry -- 3.2.5 Tannin Based Bio-Adhesive for Leather Tanning Industry -- 3.2.6 Conductive Adhesives in Microelectronics Industry -- 3.2.7 Bio-Resin Adhesive in Dental Industry -- 3.2.8 Green Adhesive in Fiberboard Industry -- 3.3 Conclusions and Future Scope. , References -- Chapter 4 Green Adhesives for Biomedical Applications -- 4.1 Introduction -- 4.2 Main Raw Materials of Green Adhesives: Structure, Composition, and Properties -- 4.2.1 Chitosan -- 4.2.2 Alginate -- 4.2.3 Lignin -- 4.2.4 Lactic Acid PLA -- 4.3 Properties Characterization of Green Adhesives for Biomedical Applications -- 4.3.1 Diffraction X-Rays (DRX) -- 4.3.2 Atomic Force Microscopy (AFM) -- 4.3.3 Scanning Electron Microscope (SEM Images) -- 4.3.4 Wettability or Contact Angle (CA) -- 4.3.5 Fourier Transform Infrared Spectroscopy (FTIR) -- 4.3.6 Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) -- 4.3.7 Thermal Analysis (TG/DTG/DTA and DSC Curves) -- 4.3.8 Surface Area and Porosimetry Analyzer (ASAP) -- 4.3.9 Mechanical Properties of Green Adhesives -- 4.4 Biomedical Applications of Natural Polymers -- 4.4.1 Alginate -- 4.4.1.1 Biomedical Applications of Alginate -- 4.4.2 Chitosan -- 4.4.2.1 Biomedical Applications of Chitosan -- 4.4.3 Lignin -- 4.4.3.1 Biomedical Applications of Lignin -- 4.4.4 Polylactide (PLA) -- 4.4.4.1 Biomedical Applications of PLA -- 4.5 Final Considerations -- Acknowledgements -- References -- Chapter 5 Waterborne Adhesives -- 5.1 Introduction -- 5.1.1 Motivation for the Use of Waterborne Adhesives -- 5.1.1.1 Sustainability and Environment Regulations -- 5.1.1.2 Circular Economy -- 5.1.1.3 Avoid Harmful Emissions -- 5.1.1.4 Development of Novel and Sustainable End Products -- 5.1.2 Environmental Effects and Mankind Toxicity Analysis -- 5.2 Performance of Waterborne Adhesives: An Overview -- 5.2.1 Waterborne Polyurethane (WBPU) Adhesives -- 5.2.1.1 Chemical Structure of Waterborne PU -- 5.2.1.2 Performances of WBPU Adhesives -- 5.2.2 Waterborne Epoxy Adhesive -- 5.3 Conclusions -- References -- Chapter 6 Using Polyfurfuryl Alcohol as Thermoset Adhesive/Sealant -- 6.1 Introduction. , 6.2 Furfuryl Alcohol as Adhesives -- 6.3 Polyfurfuryl Alcohol as Sealants -- 6.3.1 Effect of Different Parameters on the Curing of PFA-Based Sealants -- 6.4 Applications -- 6.5 Conclusions -- Acknowledgement -- References -- Chapter 7 Bioadhesives -- 7.1 Introduction -- 7.2 History of Bioadhesives -- 7.3 Classification of Bioadhesives -- 7.4 Mechanism of Bioadhesion -- 7.4.1 Mechanical Interlocking -- 7.4.2 Chain Entanglement -- 7.4.3 Intermolecular Bonding -- 7.4.4 Electrostatic Bonding -- 7.5 Testing of Bioadhesives -- 7.5.1 In Vitro Methods -- 7.5.1.1 Shear Stress Measurements -- 7.5.1.2 Peel Strength Evaluation -- 7.5.1.3 Flow Through Experiment and Plate Method -- 7.5.2 Ex Vitro Methods -- 7.5.2.1 Adhesion Weight Method -- 7.5.2.2 Fluorescent Probe Methods -- 7.5.2.3 Falling Liquid Film Method -- 7.6 Application of Bioadhesives -- 7.6.1 Bioadhesives as Drug Delivery Systems -- 7.6.2 Bioadhesives as Fibrin Sealants -- 7.6.3 Bioadhesives as Protein-Based Adhesives -- 7.6.4 Bioadhesives in Tissue Engineering -- 7.7 Conclusion -- References -- Chapter 8 Polysaccharide-Based Adhesives -- 8.1 Introduction -- 8.2 Cellulose-Derived Adhesive -- 8.2.1 Esterification -- 8.2.1.1 Cellulose Nitrate -- 8.2.1.2 Cellulose Acetate -- 8.2.1.3 Cellulose Acetate Butyrate -- 8.2.2 Etherification -- 8.2.2.1 Methyl Cellulose -- 8.2.2.2 Ethyl Cellulose -- 8.2.2.3 Carboxymethyl Cellulose -- 8.3 Starch-Derived Adhesives -- 8.3.1 Alkali Treatment -- 8.3.2 Acid Treatment -- 8.3.3 Heating -- 8.3.4 Oxidation -- 8.4 Natural Gums Derived-Adhesives -- 8.5 Fermentation-Based Adhesives -- 8.6 Enzyme Cross-Linked-Based Adhesives -- 8.7 Micro-Biopolysaccharide-Based Adhesives -- 8.8 Mechanism of Adhesion -- 8.9 Tests for Adhesion Strength -- 8.10 Applications -- 8.10.1 Biomedical Applications -- 8.10.2 Food Stuffs Applications -- 8.10.3 Pharmaceutical Applications. , 8.10.4 Agricultural Applications -- 8.10.5 Cigarette Manufacturing -- 8.10.6 Skin Cleansing Applications -- 8.11 Conclusion -- References -- Chapter 9 Wound Healing Adhesives -- 9.1 Introduction -- 9.2 Wound -- 9.2.1 Types of Wounds -- 9.2.1.1 Acute Wounds -- 9.2.1.2 Chronic Wounds -- 9.3 Structure and Function of the Skin -- 9.4 Mechanism of Wound Healing -- 9.5 Wound Closing Techniques -- 9.6 Wound Healing Adhesives -- 9.7 Types of Wound Healing Adhesives Based Upon Site of Application -- 9.7.1 External Use Wound Adhesives -- 9.7.1.1 Steps for Applying External Wound Healing Adhesives on Skin [30] -- 9.7.2 Internal Use Wound Adhesives -- 9.8 Types of Wound Healing Adhesives Based Upon Chemistry -- 9.8.1 Natural Wound Healing Adhesives -- 9.8.1.1 Fibrin Sealants/Fibrin-Based Tissue Adhesives -- 9.8.1.2 Albumin-Based Adhesives -- 9.8.1.3 Collagen and Gelatin-Based Wound Healing Adhesives -- 9.8.1.4 Starch -- 9.8.1.5 Chitosan -- 9.8.1.6 Dextran -- 9.8.2 Synthetic Wound Healing Adhesives -- 9.8.2.1 Cyanoacrylate -- 9.8.2.2 Poly Ethylene Glycol-Based Wound Adhesives (PEG) -- 9.8.2.3 Hydrogels -- 9.8.2.4 Polyurethane -- 9.9 Summary -- References -- Chapter 10 Green-Wood Flooring Adhesives -- 10.1 Introduction -- 10.2 Wood Flooring -- 10.2.1 Softwood Flooring -- 10.2.2 Hardwood Flooring -- 10.2.3 Engineered Wood Flooring -- 10.2.4 Laminate Flooring -- 10.2.5 Vinyl Flooring -- 10.2.6 Agricultural Residue Wood Flooring Panels -- 10.3 Recent Advances About Green Wood-Flooring Adhesives -- 10.3.1 Xylan -- 10.3.2 Modified Cassava Starch Bioadhesives -- 10.3.3 High-Efficiency Bioadhesive -- 10.3.4 Bioadhesive Made From Soy Protein and Polysaccharide -- 10.3.5 Green Cross-Linked Soy Protein Wood Flooring Adhesive -- 10.3.6 "Green" Bio-Thermoset Resins Derived From Soy Protein Isolate and Condensed Tannins. , 10.3.7 Development of Green Adhesives Using Tannins and Lignin for Fiberboard Manufacturing -- 10.3.8 Cottonseed Protein as Wood Adhesives -- 10.3.9 Chitosan as an Adhesive -- 10.3.10 PE-cg-MAH Green Wood Flooring Adhesive -- References -- Chapter 11 Synthetic Binders for Polymer Division -- List of Abbreviations -- 11.1 Introduction -- 11.2 Classification of Adhesives Based on Its Chemical Properties -- 11.2.1 Thermoset Adhesives -- 11.2.2 Thermoplastic Adhesives -- 11.2.3 Adhesive Blends -- 11.3 Adhesives Characteristics -- 11.4 Adhesives Classification Based on Its Function -- 11.4.1 Permanent Adhesives -- 11.4.2 Removable Adhesives -- 11.4.3 Repositionable Adhesives -- 11.4.4 Blended Adhesives -- 11.4.5 Anaerobic Adhesives -- 11.4.6 Aromatic Polymer Adhesives -- 11.4.7 Asphalt -- 11.4.8 Adhesives Based on Butyl Rubber -- 11.4.9 Cellulose Ester Adhesives -- 11.4.10 Adhesives Based on Cellulose Ether -- 11.4.11 Conductive Adhesives -- 11.4.12 Electrically Conductive Adhesive Materials -- 11.4.13 Thermally Conductive Adhesives -- 11.5 Resin -- 11.5.1 Unsaturated Polyester Resin -- 11.5.2 Monomers -- 11.5.2.1 Unsaturated Polyester -- 11.5.2.2 Alcohol Constituents -- 11.5.2.3 Constituents Like Anhydride and Acid -- 11.5.3 Vinyl Monomers of Unsaturated Polyester Resins -- 11.5.4 Styrenes -- 11.5.5 Acrylates and Methacrylates -- 11.5.6 Vinyl Ethers -- 11.5.7 Fillers -- 11.6 Polyurethanes -- 11.6.1 Monomers -- 11.6.1.1 Diisocyanates -- 11.6.1.2 Phosgene Route -- 11.6.1.3 Phosgene-Free Route -- 11.6.1.4 Polyols -- 11.6.1.5 Vinyl Functionalized Polyols -- 11.6.1.6 Polyols Based on Modified Polyurea -- 11.6.1.7 Polyols Based on Polyester -- 11.6.1.8 Acid and Alcohols-Based Polyesters -- 11.6.2 Rectorite Nanocomposites -- 11.6.3 Zeolite -- 11.7 Epoxy Resins -- 11.7.1 Monomers -- 11.7.1.1 Epoxides -- 11.7.1.2 Hyper Branched Polymers. , 11.7.2 Epoxide Resins Based on Liquid Crystalline Structure.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Zurich :Trans Tech Publications, Limited,
    Keywords: Electronic books.
    Description / Table of Contents: Special topic volume with invited peer reviewed papers only.
    Type of Medium: Online Resource
    Pages: 1 online resource (217 pages)
    Edition: 1st ed.
    ISBN: 9783035700473
    Series Statement: Materials Science Forum Series ; v.Volume 842
    Language: English
    Note: Intro -- Advanced Functional Materials: Properties and Applications, Vol. I -- Preface -- Table of Contents -- Synthesis of Bioactives Coumarin Derivatives, Phthalocyanines and Terminal Conjugated Dienes via a Ruthenium Catalyzed Cross-Metathesis: Application to Renewable Resources -- Lead Poisoning - The Roman Scenario and Today's World -- Graphene Based Functional Hybrid Nanostructures: Preparation, Properties and Applications -- Electrical Conductivity, Dielectric, Modulus and Optical Studies of Ag2SO4 and TiO2 Composite Solid Electrolytes -- Fabrication, Characterization and Cytotoxicity of Guar Gum/Copper Oxide Nanocomposite: Efficient Removal of Organic Pollutant -- Engineered Wood Composite of Laminated Veneer Lumber: Physical and Mechanical Properties -- Studies on Influence of Chemical Modification, Plasticizer and Starch Concentration on Some Characteristics of Biodegradable Film -- Biomedical Implants and Tissues: Status and Prospects -- Green Analytical Methods in Analysis of Aflatoxins -- Carbohydrate-Based Advanced Biomaterials for Food Sustainability: A Review -- Synthesis and Characterization of Zirconium-Resorcinol Phosphate -- A New Hybrid Cation Exchanger and Dye Adsorbent for Water Treatment -- Keywords Index -- Authors Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Sharjah :Bentham Science Publishers,
    Keywords: Electronic books.
    Description / Table of Contents: Increased industrial and agricultural activity has led to the contamination of the earth's soil and groundwater resources with hazardous chemicals. The presence of heavy metals, dyes, fluorides, dissolved solids, and many other pollutants used in industry and agriculture are responsible for hazardous levels of water pollution. The removal of these pollutants in water resources is challenging. Bioremediation is a new technique that employs living organisms, usually bacteria and fungi, to remove pollutants from soil and water, preferably in situ. This approach is more cost-effective than traditional techniques, such as incineration of soils and carbon filtration of water. It requires understanding how organisms consume and transform polluting chemicals, survive in polluted environments, and how they should be employed in the field. Bioremediation for Environmental Pollutants discusses the latest research in green chemistry and practices and principles involved in quality improvement of water by remediation. It covers different aspects of environmental problems and their remedies with up-to-date developments in the field of bioremediation of industrial/environmental pollutants. Volume 1 focuses on the bioremediation of heavy metals, pesticides, textile dyes removal, petroleum hydrocarbon, microplastics and plastics. This book is invaluable for researchers and scientists in environmental science, environmental microbiology, and waste management. It also serves as a learning resource for graduate and undergraduate students in environmental science, microbiology, limnology, freshwater ecology, and microbial biotechnology.
    Type of Medium: Online Resource
    Pages: 1 online resource (519 pages)
    Edition: 1st ed.
    ISBN: 9789815123494
    Series Statement: Sustainable Materials Series ; v.2
    Language: English
    Note: Cover -- Title -- Copyright -- End User License Agreement -- Contents -- Preface -- List of Contributors -- Microbial Remediation of Heavy Metals -- Removal of Heavy Metals using Microbial Bioremediation -- Deepesh Tiwari1, Athar Hussain2,*, Sunil Kumar Tiwari3, Salman Ahmed4, Mohd. Wajahat Sultan5 and Mohd. Imran Ahamed6 -- INTRODUCTION -- HEAVY METALS: SOURCES AND EFFECTS -- HEAVY METALS OCCURRENCES -- HEAVY METAL REMOVAL STRATEGIES -- Physical Methods -- Chemical Methods -- Biological Methods -- Phytoremediation -- Bioremediation -- Mechanism of Bioremediation -- Bioremediation by Biosorption -- Bioremediation by Bioaccumulation -- Comparison of Biosorption and Bioaccumulation Process -- Biotechnological Intervention in Bioremediation Processes by the Microbial Approach -- The Ability of Microorganisms to Bioremediate Heavy Metals -- Bacteria Remediation Capacity of Heavy Metal -- Fungi Remediation Capacity of Heavy Metal -- Remediation Capacity of Heavy Metal by Algae -- Heavy Metal Removal Using Biofilms -- Plant Approach -- Advantages of Bioremediation -- Disadvantages of Bioremediation -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Bioremediation of Heavy Metal in Paper Mill Effluent -- Priti Gupta1,* -- INTRODUCTION -- PAPER & -- PULP INDUSTRY: GLOBAL OUTLOOK ON UTILITY AND GROWTH -- PAPER & -- PULP INDUSTRY: GLOBAL OUTLOOK ON HAZARDS -- PAPER MAKING PROCESSES AND WASTEWATER GENERATION -- Debarking -- Pulping -- Mechanical Pulping -- Chemical Pulping -- Bleaching -- Washing -- Stock Preparation and Paper Making Process -- HEAVY METALS AT GLANCE -- Adverse Effect of Heavy Metal Contamination -- Soil -- Microbial Population -- Plants -- Animals -- Humans -- Remediation Technologies for the Treatment of Heavy Metal Contaminated Wastewater Effluent. , BIOREMEDIATION: AN INNOVATIVE AND USEFUL APPROACH -- Industrial by-Products -- Agricultural Wastes -- Phytoremediation Methods and its Types -- Microbial Biosorbents -- MICROBIAL BIOREMEDIATION METHODS -- Biosorption -- How Does Biosorption Works? -- Important Factors Governing Biosorption Mechanism -- Types of Biosorption -- Examples of Efficient Biosorbents -- Advantages -- Biotransformation -- Bioaccumulation -- Bioleaching -- FACTORS AFFECTING MICROBIAL REMEDIATION OF HEAVY METALS -- CHALLENGES -- CONCLUSION AND FUTURE ASPECTS -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Bioremediation of Pesticides -- Praveen Kumar Yadav1,2,*, Kamlesh Kumar Nigam3, Shishir Kumar Singh2,4, Ankit Kumar5 and S. Swarupa Tripathy1 -- INTRODUCTION -- Pesticides -- Bioremediation of Pesticides -- Type of Bioremediation -- In-situ Bioremediation -- Ex-situ Bioremediation -- Aerobic Bioremediation -- Anaerobic Bioremediation -- Mycodegradation of Pesticides -- Mycodegradation of Pesticides -- Bacterial Degradation of Pesticides -- Mechanisms Involved in Bioremediation -- Genetic Modification in Bioremediation Tools -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Biosurfactants for Biodégradation -- Telli Alia1,* -- INTRODUCTION -- BIOSURFACTANTS -- Definition and Importance -- Surface Activity -- Critical Micelle Concentration (CMC) -- Hydrophile-lipophile Balance -- Emulsion Stability -- Classification, Properties and Applications of Biosurfactants -- APPLICATION OF BIOSUFACTANT IN BIODEGRADATION -- Biodegradation of Crude Oil and Petroleum Wastes -- Removal and Detoxification of Heavy Metals -- Biodegradation of Pesticides -- Biodegradation of Organic Dyes -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- REFERENCES. , Potential Application of Biological Treatment Methods in Textile Dyes Removal -- Rustiana Yuliasni1, Bekti Marlena1, Nanik Indah Setianingsih1, Abudukeremu Kadier2,3,*, Setyo Budi Kurniawan4, Dongsheng Song2,5 and Peng-Cheng Ma2,3 -- INTRODUCTION -- HISTORY AND CLASSIFICATION OF DYES -- History of Textile Dyes -- Classification of Dyes Based on Industrial Application -- Direct Dyes -- Disperse Dyes -- Vat Dyes -- Basic Dyes -- Acid Dyes -- Sulphur Dyes -- Azo Dyes -- Reactive Dyes -- Dyes Classification Based on Chromophores -- ENVIRONMENTAL CONCERN RELATED TO DYES -- DYES REMOVAL TECHNIQUES -- BIODEGRADATION MECHANISMS OF DYES -- Biosorption -- Bioaccumulation -- Biodegradation -- FUTURE PROSPECTS FOR APPLICATION -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Fungal Bioremediation of Pollutants -- Evans C. Egwim1,*, Oluwafemi A. Oyewole2 and Japhet G. Yakubu2 -- INTRODUCTION -- Pollutants and Their Classification -- Petroleum Hydrocarbons -- Heavy Metals -- Chemical Pollutants -- Synthetic Pesticides -- Industrial Dyes -- Pharmaceutical Products -- Effects of Pollutants in the Soil -- Effects of Pollutants in the Aquatic Environment -- Effects of Pollutants in the Air -- Bioremediation -- Bioremediation Techniques -- Biosparging -- Bioventing -- Bioaugmentation -- Biostimulation -- Ex situ -- Solid Phase -- Land Farming -- Composting -- Biopiles -- Slurry Phase -- Fungi -- Mycoremediation -- White Rot Fungi -- Enzyme System of WRF -- Lignin Peroxidase -- Manganese Peroxidase -- Versatile Peroxidase -- Laccase -- Cytochrome P450s Monooxygenase -- Mycoremediation of Pollutants -- Mycoremediation of Petroleum Hydrocarbons -- Mycoremediation of Dyes -- Mycoremediation of Pesticides -- Mycoremediation of Pharmaceutical Products -- Mycoremediation of Heavy Metal -- Advantages of Mycoremediation. , Limitations of Mycoremediation -- Nutrients -- Bioavailability of Pollutants -- Temperature -- Effects of pH -- Relative Humidity -- Toxicity of Pollutants -- Oxygen -- Moisture Content -- Presence of Contaminants -- CONCLUSION AND FUTURE PERSPECTIVE -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- REFERENCES -- Antifouling Nano Filtration Membrane -- Sonalee Das1,* and Lakshmi Unnikrishnan1 -- INTRODUCTION -- MEMBRANE FOULING -- Classification of Membrane Fouling -- Mechanism of Membrane Fouling -- Factors Affecting Membrane Fouling -- NANOFILTRATION MEMBRANES -- Mechanism of Action -- Characterization of NF Membranes -- Industrial Applications -- Challenges in NF Membranes -- Membrane Fouling -- Separation Between the Solutes -- Post-treatment of Concentrates -- Chemical Resistance -- Insufficient Rejection in Water Treatment -- Need for Modelling & -- Simulation Tools -- ANTIFOULING NANOFILTRATION (AF-NF) MEMBRANES -- Recent Progress in the Fabrication of Anti-Fouling Nanofiltration (NF) Membranes -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- Microbes and their Genes involved in Bioremediation of Petroleum Hydrocarbon -- Bhaskarjyoti Gogoi1, Indukalpa Das1, Shamima Begum1, Gargi Dutta1, Rupesh Kumar1 and Debajit Borah1,* -- INTRODUCTION -- TYPES OF BIOREMEDIATION STRATEGIES -- PHYSICAL METHOD FOR BIOREMEDIATION OF PETROLEUM HYDROCARBON -- CHEMICAL METHOD FOR BIOREMEDIATION OF PETROLEUM HYDROCARBON -- BIOLOGICAL METHODS -- EX-SITU BIOREMEDIATION -- In Situ Bioremediation -- Microbial Bioremediation Method -- ROLE OF BIOSURFACTANTS IN PETROLEUM HYDROCARBON DEGRADATION -- ROLE OF MICROBIAL ENZYMES AND RESPONSIBLE GENES IN HYDROCARBON DEGRADATION -- FACTORS AFFECTING BIOREMEDIATION OF PETROLEUM HYDROCARBONS -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST. , ACKNOWLEDGEMENT -- REFERENCES -- Application and Major Challenges of Microbial Bioremediation of Oil Spill in Various Environments -- Rustiana Yuliasni1, Setyo Budi Kurniawan2, Abudukeremu Kadier3,4,*, Siti Rozaimah Sheikh Abdullah2, Peng-Cheng Ma3,4, Bekti Marlena1, Nanik Indah Setianingsih1, Dongsheng Song3,5 and Ali Moertopo Simbolon1 -- INTRODUCTION -- NATURE AND COMPOSITION OF PETROLEUM CRUDE OIL -- BIOREMEDIATION AGENTS -- Bacteria as Bioremediation Agents of Hydrocarbon Contaminated Environment -- Fungal Bioremediation of Hydrocarbon Contaminated Environment -- Algae as Bioremediation Agent of Hydrocarbon Contaminated Environment -- Commercialized Product of Microbial Agents for Hydrocarbon Remediation -- APPLICATION STRATEGIES AND PRACTICES -- In-situ Bioremediation -- Ex-situ Bioremediation -- FACTOR AFFECTING BIOREMEDIATION -- Temperature -- Substances Bioavailability -- Oxygen or Alternate Electron Acceptors -- Nutrients -- MATRICES TO BE REMEDIATED -- Soil Bioremediation -- Water Bioremediation -- Sludge Bioremediation -- CONCLUSION AND FUTURE CHALLENGES -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- REFERENCES -- Bioremediation of Hydrocarbons -- Grace N. Ijoma1, Weiz Nurmahomed1, Tonderayi S. Matambo1, Charles Rashama1 and Joshua Gorimbo1,* -- INTRODUCTION -- Hydrocarbon Pollution Effects on Macrobiota -- Hydrocarbon Pollution Effects on Microbiota -- The Fate of Hydrocarbon Pollution in the Environment -- Weathering, Physical and Chemical Interactions with the Terrestrial Environment -- Weathering, Physical and Chemical Interactions within the Terrestrial Environment -- Reasons for Hydrocarbon Recalcitrance to Biodegradation -- Ecotoxicology: Consortia Stress Responses, Tolerance and Adaptation -- Rate-limiting Nutrients: Changes in Nitrogen Flux -- Changes in Microbial Population Dynamics. , Microbial Consortia Interactions Employed in the Degradation of Hydrocarbons.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Layer structure (Solids). ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (403 pages)
    Edition: 1st ed.
    ISBN: 9781119655206
    DDC: 620.11
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 2D Metal-Organic Frameworks -- 1.1 Introduction -- 1.2 Synthesis Approaches -- 1.2.1 Selection of Synthetic Raw Materials -- 1.2.2 Solvent Volatility Method -- 1.2.3 Diffusion Method -- 1.2.3.1 Gas Phase Diffusion -- 1.2.3.2 Liquid Phase Diffusion -- 1.2.4 Sol-Gel Method -- 1.2.5 Hydrothermal/Solvothermal Synthesis Method -- 1.2.6 Stripping Method -- 1.2.7 Microwave Synthesis Method -- 1.2.8 Self-Assembly -- 1.2.9 Special Interface Synthesis Method -- 1.2.10 Surfactant-Assisted Synthesis Method -- 1.2.11 Ultrasonic Synthesis -- 1.3 Structures, Properties, and Applications -- 1.3.1 Structure and Properties of MOFs -- 1.3.2 Application in Biomedicine -- 1.3.3 Application in Gas Storage -- 1.3.4 Application in Sensors -- 1.3.5 Application in Chemical Separation -- 1.3.6 Application in Catalysis -- 1.3.7 Application in Gas Adsorption -- 1.4 Summary and Outlook -- Acknowledgements -- References -- Chapter 2 2D Black Phosphorus -- 2.1 Introduction -- 2.2 The Research on Black Phosphorus -- 2.2.1 The Structure and Properties -- 2.2.1.1 The Structure of Black Phosphorus -- 2.2.1.2 The Properties of Black Phosphorus -- 2.2.2 Preparation Methods -- 2.2.2.1 Mechanical Exfoliation -- 2.2.2.2 Liquid-Phase Exfoliation -- 2.2.3 Antioxidant -- 2.2.3.1 Degradation Mechanism -- 2.2.3.2 Adding Protective Layer -- 2.2.3.3 Chemical Modification -- 2.2.3.4 Doping -- 2.3 Applications of Black Phosphorus -- 2.3.1 Electronic and Optoelectronic -- 2.3.1.1 Field-Effect Transistors -- 2.3.1.2 Photodetector -- 2.3.2 Energy Storage and Conversion -- 2.3.2.1 Catalysis -- 2.3.2.2 Batteries -- 2.3.2.3 Supercapacitor -- 2.3.3 Biomedical -- 2.4 Conclusion and Outlook -- Acknowledgements -- References -- Chapter 3 2D Metal Carbides -- 3.1 Introduction -- 3.2 Synthesis Approaches -- 3.2.1 Ti3C2 Synthesis. , 3.2.2 V2C Synthesis -- 3.2.3 Ti2C Synthesis -- 3.2.4 Mo2C Synthesis -- 3.3 Structures, Properties, and Applications -- 3.3.1 Structures and Properties of 2D Metal Carbides -- 3.3.1.1 Structures and Properties of Ti3C2 -- 3.3.1.2 Structural Properties of Ti2C -- 3.3.1.3 Structural Properties of Mo2C -- 3.3.1.4 Structural Properties of V2C -- 3.3.2 Carbide Materials in Energy Storage Applications -- 3.3.2.1 Ti3C2 -- 3.3.2.2 Ti2C -- 3.3.2.3 V2C -- 3.3.2.4 Mo2C -- 3.3.3 Metal Carbide Materials in Catalysis Applications -- 3.3.3.1 Ti3C2 -- 3.3.3.2 V2C -- 3.3.3.3 Mo2C -- 3.3.4 Metal Carbide Materials in Environmental Management Applications -- 3.3.4.1 Ti3C2 in Environmental Management Applications -- 3.3.4.2 Ti2C in Environmental Management Applications -- 3.3.4.3 V2C in Environmental Management Applications -- 3.3.4.4 Mo2C in Environmental Management Applications -- 3.3.5 Carbide Materials in Biomedicine Applications -- 3.3.5.1 Ti3C2 in Biomedicine Applications -- 3.3.5.2 Ti2C in Biomedicine Applications -- 3.3.5.3 V2C in Biomedicine Applications -- 3.3.5.4 Mo2C in Biomedicine Applications -- 3.3.6 Carbide Materials in Gas Sensing Applications -- 3.3.6.1 Ti3C2 in Gas Sensing Applications -- 3.3.6.2 Ti2C in Gas Sensing Applications -- 3.3.6.3 V2C in Gas Sensing Applications -- 3.3.6.4 Mo2C in Gas Sensing Applications -- 3.4 Summary and Outlook -- Acknowledgements -- References -- Chapter 4 2D Carbon Materials as Photocatalysts -- 4.1 Introduction -- 4.2 Carbon Nanostructured-Based Materials -- 4.2.1 Forms of Carbon -- 4.2.2 Synthesis of Carbon Nanostructured-Based Materials -- 4.3 Photo-Degradation of Organic Pollutants -- 4.3.1 Graphene, Graphene Oxide, Graphene Nitride (g-C3N4) -- 4.3.1.1 Graphene-Based Materials -- 4.3.1.2 Graphene Nitride (g-C3N4) -- 4.3.2 Carbon Dots (CDs) -- 4.3.3 Carbon Spheres (CSs). , 4.4 Carbon-Based Materials for Hydrogen Production -- 4.5 Carbon-Based Materials for CO2 Reduction -- References -- Chapter 5 Sensitivity Analysis of Surface Plasmon Resonance Biosensor Based on Heterostructure of 2D BlueP/MoS2 and MXene -- 5.1 Introduction -- 5.2 Proposed SPR Sensor, Design Considerations, and Modeling -- 5.2.1 SPR Sensor and Its Sensing Principle -- 5.2.2 Design Consideration -- 5.2.2.1 Layer 1: Prism for Light Coupling -- 5.2.2.2 Layer 2: Metal Layer -- 5.2.2.3 Layer 3: BlueP/MoS2 Layer -- 5.2.2.4 Layer 4: MXene (Ti3C2Tx) Layer as BRE for Biosensing -- 5.2.2.5 Layer 5: Sensing Medium (RI-1.33-1.335) -- 5.2.3 Proposed Sensor Modeling -- 5.3 Results Discussion -- 5.3.1 Role of Monolayer BlueP/MoS2 and MXene (Ti3C2Tx) and Its Comparison With Conventional SPR -- 5.3.2 Influence of Varying Heterostructure Layers for Proposed Design -- 5.3.3 Effect of Changing Prism Material and Metal on Performance of Proposed Design -- 5.4 Conclusion -- References -- Chapter 6 2D Perovskite Materials and Their Device Applications -- 6.1 Introduction -- 6.2 Structure -- 6.2.1 Crystal Structure -- 6.2.2 Electronic Structure of 2D Perovskites -- 6.2.3 Structure of Photovoltaic Cell -- 6.3 Discussion and Applications -- 6.4 Conclusion -- References -- Chapter 7 Introduction and Significant Parameters for Layered Materials -- 7.1 Graphene -- 7.2 Phosphorene -- orthorhombic rhombohedral Simple cubic -- semiconductor semimetal metal -- 7.3 Silicene -- 7.4 ZnO -- 7.5 Transition Metal Dichalcogenides (TMDCs) -- 7.6 Germanene and Stanene -- 7.7 Heterostructures -- References -- Chapter 8 Increment in Photocatalytic Activity of g-C3N4 Coupled Sulphides and Oxides for Environmental Remediation -- 8.1 Introduction -- 8.2 GCN Coupled Metal Sulphide Heterojunctions for Environment Remediation -- 8.2.1 GCN and MoS2-Based Photocatalysts. , 8.2.2 GCN and CdS-Based Heterojunctions -- 8.2.3 Some Other GCN Coupled Metal Sulphide Photocatalysts -- 8.3 GCN Coupled Metal Oxide Heterojunctions for Environment Remediation -- 8.3.1 GCN and MoO3-Based Heterojunctions -- 8.3.2 GCN and Fe2O3-Based Heterojunctions -- 8.3.3 Some Other GCN Coupled Metal Oxide Photocatalysts -- 8.4 Conclusions and Outlook -- References -- Chapter 9 2D Zeolites -- 9.1 Introduction -- 9.1.1 What is 2D Zeolite? -- 9.1.2 Advancement in Zeolites to 2D Zeolite -- 9.2 Synthetic Method -- 9.2.1 Bottom-Up Method -- 9.2.2 Top-Down Method -- 9.2.3 Support-Assisted Method -- 9.2.4 Post-Synthesis Modification of 2D Zeolites -- 9.3 Properties -- 9.4 Applications -- 9.4.1 Petro-Chemistry -- 9.4.2 Biomass Conversion -- 9.4.2.1 Pyrolysis of Solid Biomass -- 9.4.2.2 Condensation Reactions -- 9.4.2.3 Isomerization -- 9.4.2.4 Dehydration Reactions -- 9.4.3 Oxidation Reactions -- 9.4.4 Fine Chemical Synthesis -- 9.4.5 Organometallics -- 9.5 Conclusion -- References -- Chapter 10 2D Hollow Nanomaterials -- 10.1 Introduction -- 10.2 Structural Aspects of HNMs -- 10.3 Synthetic Approaches -- 10.3.1 Template-Based Strategies -- 10.3.1.1 Hard Templating -- 10.3.1.2 Soft Templating -- 10.3.2 Self-Templating Strategies -- 10.3.2.1 Surface Protected Etching -- 10.3.2.2 Ostwald Ripening -- 10.3.2.3 Kirkendall Effect -- 10.3.2.4 Galvanic Replacement -- 10.4 Medical Applications of HNMs -- 10.4.1 Imaging and Diagnosis Applications -- 10.4.2 Applications of Nanotube Arrays -- 10.4.2.1 Pharmacy and Medicine -- 10.4.2.2 Cancer Therapy -- 10.4.2.3 Immuno and Hyperthermia Therapy -- 10.4.2.4 Infection Therapy and Gene Therapy -- 10.4.3 Hollow Nanomaterials in Diagnostics and Therapeutics -- 10.4.4 Applications in Regenerative Medicine -- 10.4.5 Anti-Neurodegenerative Applications -- 10.4.6 Photothermal Therapy -- 10.4.7 Biosensors. , 10.5 Non-Medical Applications of HNMs -- 10.5.1 Catalytic Micro or Nanoreactors -- 10.5.2 Energy Storage -- 10.5.2.1 Lithium Ion Battery -- 10.5.2.2 Supercapacitor -- 10.5.3 Nanosensors -- 10.5.4 Wastewater Treatment -- 10.6 Toxicity of 2D HNMs -- 10.7 Future Challenges -- 10.8 Conclusion -- Acknowledgement -- References -- Chapter 11 2D Layered Double Hydroxides -- 11.1 Introduction -- 11.2 Structural Aspects -- 11.3 Synthesis of LDHs -- 11.3.1 Co-Precipitation Method -- 11.3.2 Urea Hydrolysis -- 11.3.3 Ion-Exchange Method -- 11.3.4 Reconstruction Method -- 11.3.5 Hydrothermal Method -- 11.3.6 Sol-Gel Method -- 11.4 Nonmedical Applications of LDH -- 11.4.1 Adsorbent -- 11.4.2 Catalyst -- 11.4.3 Sensors -- 11.4.4 Electrode -- 11.4.5 Polymer Additive -- 11.4.6 Anion Scavenger -- 11.4.7 Flame Retardant -- 11.5 Biomedical Applications -- 11.5.1 Biosensors -- 11.5.2 Scaffolds -- 11.5.3 Anti-Microbial Agents -- 11.5.4 Drug Delivery -- 11.5.5 Imaging -- 11.5.6 Protein Purification -- 11.5.7 Gene Delivery -- 11.6 Toxicity -- 11.7 Conclusion -- Acknowledgement -- References -- Chapter 12 Experimental Techniques for Layered Materials -- 12.1 Introduction -- 12.2 Methods for Synthesis of Graphene Layered Materials -- 12.3 Selection of a Suitable Metallic Substrate -- 12.4 Graphene Synthesis by HFTCVD -- 12.5 Graphene Transfer -- 12.6 Characterization Techniques -- 12.6.1 X-Ray Diffraction Technique -- d D k -- 12.6.2 Field Emission Scanning Electron Microscopy (FESEM) -- 12.6.3 Transmission Electron Microscopy (TEM) -- 12.6.4 Fourier Transform Infrared Radiation (FTIR) -- 12.6.5 UV-Visible Spectroscopy -- 12.6.6 Raman Spectroscopy -- 12.6.7 Low Energy Electron Microscopy (LEEM) -- 12.7 Potential Applications of Graphene and Derived Materials -- 12.8 Conclusion -- Acknowledgement -- References -- Chapter 13 Two-Dimensional Hexagonal Boron Nitride and Borophenes. , 13.1 Two-Dimensional Hexagonal Boron Nitride (2D h-BN): An Introduction.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Storage batteries. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (494 pages)
    Edition: 1st ed.
    ISBN: 9781119714736
    DDC: 621.312424
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Progress in Separators for Rechargeable Batteries -- 1.1 Separator Overview -- 1.2 Polymer Membrane -- 1.2.1 Polyolefin Separators -- 1.2.2 PVDF -- 1.2.3 PTFE -- 1.2.4 PU -- 1.2.5 PVA -- 1.2.6 Cellulose -- 1.2.7 Other Polymer -- 1.3 Non-Woven Fabric Separator -- 1.3.1 PET -- 1.3.2 PAN -- 1.3.3 PVDF -- 1.3.4 PTFE -- 1.3.5 PVA -- 1.3.6 PI -- 1.4 Polymer Electrolyte -- 1.5 Conclusions -- References -- Chapter 2 Pb Acid Batteries -- 2.1 History of Batteries -- 2.2 Primary Batteries -- 2.3 Secondary Batteries -- 2.4 Flow Batteries -- 2.4.1 All Vanadium Redox Flow Batteries (VRBs) -- 2.4.2 Zinc-Bromine Flow Cells -- 2.5 Lead-Acid Batteries -- 2.5.1 Early Applications of Lead-Acid Batteries -- 2.5.2 Comparison With Other Types of Secondary Batteries -- 2.5.3 Electrochemistry of Lead-Acid Batteries -- 2.5.4 Basic Components of Lead-Acid Cells -- 2.5.5 Types of Lead-Acid Batteries -- 2.5.6 Charging -- 2.5.7 Maintenance -- 2.5.8 Failure Modes -- List of Abbreviations -- References -- Chapter 3 Flexible Batteries -- 3.1 Introduction -- 3.2 Battery Types -- 3.2.1 Lead-Acid Battery -- 3.2.2 Nickel Cadmium -- 3.2.3 Nickel/Hydrogen and Nickle/Metal Hydride -- 3.2.4 Lithium-Ion Batteries -- 3.3 Storage Mechanism -- 3.3.1 Flexible Electrode -- 3.3.2 Carbon Base Flexible Electrodes -- 3.4 Graphene Base Flexible Batteries -- 3.5 Metal Oxide-Based Flexible Batteries -- 3.6 Fiber-Shape Designed Flexible Batteries -- 3.7 Natural Fiber Base Flexible Batteries -- 3.8 Flexible Electrolytes -- 3.9 Conclusion -- References -- Chapter 4 Polymer Electrolytes in Rechargeable Batteries -- 4.1 Introduction -- 4.2 Solid Electrolytes for Rechargeable Batteries -- 4.2.1 Solid Oxide Electrolytes -- 4.2.2 Sulfide Solid Electrolytes -- 4.2.3 Inorganic-Organic Hybrid Electrolytes. , 4.2.4 Solid Polymer Electrolytes in Rechargeable Batteries -- 4.3 Polymer-Based Electrolytes -- 4.4 Classification of Polymer-Based Electrolytes -- 4.4.1 Polymer-Salt Complexes -- 4.4.2 Plasticized Polymer Electrolytes -- 4.4.3 Rubbery Electrolytes -- 4.4.4 Solvent-Swollen Polymers -- 4.4.5 Polyelectrolytes -- 4.4.6 Gel Polymer Electrolytes -- 4.4.7 Composite Polymer Electrolytes (CPEs) -- 4.4.8 Ionic Liquid Incorporated Polymer/Gel Electrolytes -- 4.5 Conclusion and Future Prospects -- References -- Chapter 5 Advancement in Electrolytes for Rechargeable Batteries -- 5.1 Introduction -- 5.2 Aqueous Electrolytes -- 5.2.1 Lithium Nitrate -- 5.2.2 Saturated LiCl Electrolyte -- 5.2.3 Aqueous Sodium Salts -- 5.3 Non-Aqueous Electrolytes -- 5.4 Polymer Electrolytes -- 5.4.1 Solid Polymer Electrolytes (SPE) -- 5.4.2 Gel Polymer Electrolytes (GPE) -- 5.5 Ionic Liquids Electrolytes (ILE) -- 5.6 Hybrid Electrolytes -- 5.7 Conclusions -- Acknowledgements -- References -- Chapter 6 Fabrication Assembly Techniques for K-Ion Batteries -- 6.1 Introduction -- 6.2 Battery and Its Types -- 6.3 Ni-Cd Batteries -- 6.4 Li-Ion Batteries -- 6.5 Advantages of Rechargeable Batteries -- 6.6 Disadvantages of Rechargeable Batteries -- 6.7 K-Ion Batteries -- 6.8 Advantages -- 6.9 Disadvantages -- 6.10 Honeycomb Structure of K-Ion Batteries -- 6.10.1 Methods/Synthesis of Potassium Tellurates -- 6.11 Negative Electrode Materials for K-Ion Batteries -- 6.12 K-Ion Batteries Based on Patterned Electrodes -- 6.13 Conclusion -- Acknowledgement -- References -- Chapter 7 Recent Advances in Ni-Fe Batteries as Electrical Energy Storage Devices -- 7.1 Introduction -- 7.2 Structure of Ni-Fe Batteries -- 7.3 Discussion on Electrochemical Parameters of Various Materials for Ni-Fe Batteries -- 7.4 Conclusions -- References -- Chapter 8 Nickel-Metal Hydride (Ni-MH) Batteries -- 8.1 Introduction. , 8.2 History -- 8.3 Invention of the Rechargeable Battery -- 8.4 Metal Hydrides (MH) -- 8.5 Thermodynamics and Crystal Structures of Ni-MH Battery Materials -- 8.5.1 Thermodynamics -- 8.5.2 Crystal Structures of Battery Materials -- 8.5.3 Crystal Structure of AB -- 8.5.3 Crystal Structure of AB5 and AB2 Materials -- 8.5.4 Structure of AB5 Compounds -- 8.5.5 Structure of AB2 Compounds -- 8.5.6 Substitutions of A and B Components in AB5 and AB2 -- 8.5.7 Mg-Based Alloys -- 8.5.8 Rare Earth-Mg-Ni-Based Alloys -- 8.5.9 Ti-V-Based Alloys -- 8.6 Ni-MH Batteries -- 8.7 Mechanism of Ni-MH Batteries -- 8.7.1 Battery Description -- 8.7.2 Principle -- 8.7.3 Negative Electrode -- 8.7.4 Positive Electrode -- 8.7.5 Electrolyte -- 8.7.6 Separator -- 8.8 Materials -- 8.9 Charging Nickel-Based Batteries -- 8.9.1 Guidelines for Charging -- 8.10 Performance -- 8.11 Factors Affecting Life -- 8.11.1 Exposure to Elevated Temperatures -- 8.11.2 Reversal -- 8.11.3 Extended Storage under Load -- 8.11.4 Limiting Mechanisms -- 8.12 Advantages -- 8.13 Applications -- 8.13.1 Electric Vehicles -- 8.13.2 Fuel Cell (FC) EVs -- 8.13.3 Pure EVs -- 8.13.4 Hybrid EVs -- 8.13.5 Applications in Traditional Portable Electronic Devices -- 8.13.5.1 Mobile Phones -- 8.13.5.2 Digital Cameras -- 8.14 Recent Developments and Research Work -- 8.15 Shortcomings -- References -- Chapter 9 Ni-Cd Batteries -- 9.1 Introduction -- 9.2 History -- 9.3 Characteristics -- 9.4 Construction and Working -- 9.5 Types of NiCd Batteries -- 9.6 Memory Effect -- 9.7 Maintenance and Safety -- 9.8 Availability and Cost -- 9.9 Applications -- 9.9.1 Transportation in Hybrid and Electric Vehicles -- 9.9.2 Aircrafts -- 9.9.3 Electronic Flash Units -- 9.9.4 Cordless Applications -- 9.9.5 Motorized Equipment -- 9.9.6 Two Ways Radios -- 9.9.7 Medical Instrumentation -- 9.9.8 Toys -- 9.10 Advantages and Disadvantages. , 9.11 Recycling of NiCd Batteries -- 9.12 Comparison With Other Batteries -- 9.13 Conclusion -- Acknowledgement -- References -- Chapter 10 Ca-Ion Batteries -- 10.1 Introduction -- 10.2 Selection of Anodic and Cathodic Materials -- 10.2.1 Alloy Anodes -- 10.2.1.1 Choice of Cathodes for Calcium-Ion Batteries -- 10.2.1.2 Choice of Anodes for Calcium-Ion Batteries -- 10.3 Electrochemical Arrangement -- 10.4 Electrode Materials -- 10.5 Conclusions and Perspectives -- References -- Chapter 11 Analytical Investigations in Rechargeable Batteries -- 11.1 Introduction -- 11.2 Components of a Battery -- 11.3 Principle of Rechargeable Battery -- 11.4 Aging of Rechargeable Battery -- 11.5 Analysis Techniques Used for Rechargeable Batteries -- 11.5.1 X-Ray Based -- 11.5.2 Neutron Based -- 11.5.3 Optical Analysis Techniques -- 11.5.4 Electron Based -- 11.5.5 Vibrational Analysis Techniques -- 11.5.6 Magnetism Based -- 11.5.7 Gravimetric-Based Analysis Techniques -- 11.6 Conclusion -- References -- Chapter 12 Remediation of Spent Rechargeable Batteries -- 12.1 Introduction -- 12.2 A Brief History of Battery Origin -- 12.3 The Types of Batteries -- 12.3.1 Types of Primary Batteries -- 12.3.1.1 Types of Secondary Batteries -- 12.4 Recharge the Battery -- 12.5 Battery Life -- 12.6 A Lithium-Ion Battery (LIB) -- 12.6.1 Advantages of Li-Ion Batteries -- 12.6.2 Disadvantages of Li-Ion Batteries -- 12.7 Impact of Batteries on Health -- 12.7.1 Protection Against Battery Disadvantages [101] -- 12.8 Mercury (Hg) -- 12.9 Remediation of Spent Rechargeable Batteries -- 12.9.1 Future and Challenges: Nanotechnology in Batteries -- 12.10 Conclusions -- References -- Chapter 13 Classification, Modeling, and Requirements for Separators in Rechargeable Batteries -- Acronyms -- 13.1 Introduction and Area -- 13.2 Separators in Rechargeable Batteries. , 13.3 Classification of Separator in Rechargeable Batteries -- 13.3.1 Nonwoven Separators -- 13.3.2 Microporous Membrane Separators -- 13.3.3 Ion-Exchange Membrane Separators -- 13.3.4 Nanoporous Membrane Separators -- 13.4 Properties of Separator in Rechargeable Batteries -- 13.5 Requirements for Separator in Rechargeable Batteries -- 13.6 Modeling of Separator in Rechargeable Batteries -- 13.7 Results and Discussions -- 13.8 Future Approach -- 13.9 Conclusion -- References -- Chapter 14 Research and Development and Commercialization in Rechargeable Batteries -- 14.1 Introduction -- 14.1.1 Types of Rechargeable Batteries (RBs) and Challenges Faced Towards Practical Applications -- 14.1.1.1 Li-Ion Batteries (LIBs) -- 14.1.1.2 Na and K-Ion Batteries -- 14.1.1.3 Magnesium Rechargeable Batteries (MgRBs) -- 14.1.1.4 Aqueous RBs -- 14.1.1.5 Pb-Acid, Ni-Cd, and Ni-MH Batteries -- 14.1.1.6 Zinc-Ion RBs -- 14.1.1.7 Metal-Air Batteries -- 14.1.1.8 Flexible RBs -- 14.1.2 Nanotechnology Interventions in Rechargeable Batteries -- 14.2 Research and Development in Rechargeable Batteries -- 14.2.1 Zinc Rechargeable Batteries (ZnRBs) -- 14.2.2 Magnesium Rechargeable Batteries (MgRBs) -- 14.2.3 Aqueous RBs and Hybrid Aqueous RBs -- 14.2.4 Li-Based RBs -- 14.3 Commercialization Aspects of Rechargeable Batteries -- 14.4 Future Prospects of RBs -- 14.5 Conclusion -- References -- Chapter 15 Alkaline Batteries -- 15.1 Introduction -- 15.1.1 How Batteries Work -- 15.2 History -- 15.3 Advantages -- 15.4 Disadvantages -- 15.4.1 Internal Resistance -- 15.4.2 Leakage and Damages -- 15.5 Spent ARBs -- 15.6 Classification of ABs -- 15.6.1 Ni/Co Batteries -- 15.6.2 Ni/Ni ARBs -- 15.7 Application of ABs -- 15.8 Conclusion -- Acknowledgements -- References -- Chapter 16 Advances in "Green" Ion-Batteries Using Aqueous Electrolytes -- 16.1 Introduction. , 16.2 Monovalent Ion Aqueous Batteries.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Geochemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (208 pages)
    Edition: 1st ed.
    ISBN: 9781119710080
    DDC: 551.9
    Language: English
    Note: Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Toxic Geogenic Contaminants in Serpentinitic Geological Systems: Occurrence, Behavior, Exposure Pathways, and Human Health Risks -- 1.1 Introduction -- 1.2 Serpentinitic Geological Systems -- 1.2.1 Nature, Occurrence, and Geochemistry -- 1.2.2 Occurrence and Behavior of Toxic Contaminants -- 1.3 Human Exposure Pathways -- 1.3.1 Occupational Exposure -- 1.3.2 Non-Occupational Exposure Routes -- 1.4 Human Health Risks and Their Mitigation -- 1.4.1 Health Risks -- 1.4.2 Mitigating Human Exposure and Health Risks -- 1.5 Future Perspectives -- 1.6 Conclusions -- Acknowledgements -- References -- 2 Benefits of Geochemistry and Its Impact on Human Health -- 2.1 Introduction -- 2.2 General Overview of Geochemistry and Human Health -- 2.2.1 Types of Geochemistry -- 2.2.2 Some Beneficial Effect of Some Mineral With Health Benefits -- 2.2.3 Application of Geochemistry on Human Health -- 2.3 Conclusion and Recommendations -- References -- 3 Applications of Geochemistry in Livestock: Health and Nutritional Perspective -- 3.1 Introduction -- 3.2 General and Global Perspective About Geochemistry in Livestock -- 3.3 Types of Geochemistry and Their Numerous Benefits -- 3.3.1 Analytical Geochemistry -- 3.3.2 Isotope Geochemistry -- 3.3.3 Low Temperature Geochemistry -- 3.3.4 Organic and Petroleum Geochemistry -- 3.4 Application of Geochemistry in Livestock -- 3.5 Geochemistry and Animal Health -- 3.6 General Overview of Geochemistry in Livestock's Merits of Geochemistry/Essential Minerals in Livestocks -- 3.6.1 Specific Examples of Authors That Have Used Essential Minerals in Livestock -- 3.6.2 Livestock in Relation to Geominerals -- 3.6.3 Trace Minerals Parallel Importance in Livestock -- 3.6.4 Heavy Metals Impact Livestock -- 3.7 Conclusion and Recommendations. , References -- 4 Application in Geochemistry Toward the Achievement of a Sustainable Agricultural Science -- 4.1 Introduction -- 4.2 General Overview on the Utilization of Geochemistry and Their Wide Application on Agriculture -- 4.2.1 Classification -- 4.2.2 Chemical Composition of Rocks -- 4.2.3 Effect of Some Beneficial Minerals in Agriculture -- 4.2.4 Beneficial Mineral Nutrients That are Crucial to the Development of Plants -- 4.3 Role of Geochemistry in Agriculture -- 4.4 Geochemical Effects of Heavy Metals on Crops Health -- 4.5 Conclusion and Recommendations -- References -- 5 Geochemistry, Extent of Pollution, and Ecological Impact of Heavy Metal Pollutants in Soil -- 5.1 Introduction -- 5.2 Material and Methods -- 5.2.1 Review Process -- 5.2.2 Ecological Risk Index -- 5.3 Toxic Heavy Metal and Their Impact to the Ecosystems -- 5.3.1 Arsenic -- 5.3.2 Cadmium -- 5.3.3 Chromium -- 5.3.4 Copper -- 5.3.5 Lead -- 5.3.6 Nickel -- 5.3.7 Zinc -- 5.4 Metal Pollution in Soil Across the Globe -- 5.5 Ecological and Human Health Risk Impacts of Heavy Metals -- 5.6 Conclusion -- References -- 6 Isotope Geochemistry -- 6.1 Introduction -- 6.2 Basic Definitions -- 6.2.1 The Notation -- 6.2.2 The Fractionation Factor -- 6.2.3 Isotope Fractionation -- 6.2.4 Mass Dependent and Independent Fractionations -- 6.3 Application of Traditional Isotopes in Geochemistry -- 6.3.1 Geothermometer -- 6.3.2 Isotopes in Biological System -- 6.3.3 Isotopes in Archaeology -- 6.3.4 Isotopes in Fossils and the Earliest Life -- 6.3.5 Isotopes in Hydrothermal and Ore Deposits -- 6.4 Non-Traditional Isotopes in Geochemistry -- 6.4.1 Application in Tracing of Source -- 6.4.2 Application in Process Tracing -- 6.4.3 Biological Cycling -- 6.5 Conclusion -- References -- 7 Environmental Geochemistry -- 7.1 Introduction -- 7.2 Overview of the Environmental Geochemistry -- 7.3 Conclusions. , 7.4 Abbreviations -- Acknowledgment -- References -- 8 Medical Geochemistry -- 8.1 Introduction -- 8.2 The Evolution of Geochemistry -- 8.3 This Science has Expanded Considerably to Become Distinct Branches -- 8.3.1 Cosmochemistry -- 8.3.2 The Economic Importance of Geochemistry -- 8.3.3 Analytical Geochemistry -- 8.3.4 Geochemistry of Radioisotopes -- 8.3.5 Medical Geochemistry and Human Health -- 8.3.6 Environmental Health and Safety -- 8.4 Conclusion -- References -- 9 Inorganic Geochemistry -- 9.1 Introduction -- 9.2 Elements and the Earth -- 9.2.1 Iron -- 9.2.2 Oxygen -- 9.2.3 Silicon -- 9.2.4 Magnesium -- 9.3 Geological Minerals -- 9.3.1 Quartz -- 9.3.2 Feldspar -- 9.3.3 Amphibole -- 9.3.4 Pyroxene -- 9.3.5 Olivine -- 9.3.6 Clay Minerals -- 9.3.7 Kaolinite -- 9.3.8 Bentonite, Montmorillonite, Vermiculite, and Biotite -- 9.4 Characterization Techniques -- 9.4.1 Powder X-Ray Diffraction -- 9.4.2 X-Ray Fluorescence Spectra -- 9.4.3 X-Ray Photoelectron Spectra -- 9.4.4 Electron Probe Micro-Analysis -- 9.4.5 Inductively Coupled Plasma Spectrometry -- 9.4.6 Fourier Transform Infrared Spectroscopy -- 9.4.7 Scanning Electron Microscopy Analysis -- 9.4.8 Energy Dispersive X-Ray Analysis -- 9.5 Conclusion -- References -- 10 Introduction and Scope of Geochemistry -- 10.1 Introduction -- 10.1.1 Periodic Table and Electronic Configuration -- 10.2 Periodic Properties -- 10.2.1 Ionization Enthalpy -- 10.2.2 Electron Affinity -- 10.2.3 Electro-Negativity -- 10.3 Chemical Bonding -- 10.3.1 Ionic Bond -- 10.3.2 Covalent Bond -- 10.3.3 Metallic Bond -- 10.3.4 Hydrogen Bond -- 10.3.5 Van der Waals Forces -- 10.4 Geochemical Classification and Distribution of Elements -- 10.4.1 Lithophiles -- 10.4.2 Siderophiles -- 10.4.3 Chalcophiles -- 10.4.4 Atmophiles -- 10.4.5 Biophiles -- 10.5 Chemical Composition of the Earth -- 10.6 Classification of Earth's Layers. , 10.6.1 Based on Chemical Composition -- 10.6.2 Based on Physical Properties -- 10.7 Spheres of the Earth -- 10.7.1 Geosphere/Lithosphere -- 10.7.2 Hydrosphere -- 10.7.3 Biosphere -- 10.7.4 Atmosphere -- 10.7.5 Troposphere -- 10.7.6 Stratosphere -- 10.7.7 Mesosphere -- 10.7.8 Thermosphere and Ionosphere -- 10.7.9 Exosphere -- 10.8 Sub-Disciplines of Geochemistry -- 10.9 Scope of Geochemistry -- 10.10 Conclusion -- References -- Index -- EULA.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Polysaccharides-Industrial applications. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (800 pages)
    Edition: 1st ed.
    ISBN: 9781119711391
    Language: English
    Note: Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Natural Polysaccharides From Aloe vera L. Gel (Aloe barbadensis Miller): Processing Techniques and Analytical Methods -- 1.1 Introduction -- 1.1.1 Gel Composition from A. vera -- 1.2 Applications of A. vera Mucilaginous Gel or Fractions -- 1.3 Aloe vera Gel Processing -- 1.3.1 Obtaining Polysaccharide Fraction or Acemannan -- 1.4 Analytical Methods Applied -- 1.4.1 Total Carbohydrates, Oligosaccharides, Acemannan and Free Sugars -- 1.4.2 Analytical Techniques -- 1.4.2.1 Chromatography Analysis -- 1.4.2.2 Infrared Spectroscopy (IR) -- 1.4.2.3 Nuclear Magnetic Resonance Spectroscopy -- 1.4.2.4 Mass Spectrometry -- 1.4.2.5 Ultraviolet-Visible Spectroscopy -- 1.4.2.6 Comprehensive Microarray Polymer Profiling -- 1.5 Conclusion -- References -- 2 Cell Wall Polysaccharides -- 2.1 Introduction to Cell Wall -- 2.2 Plant Cell Wall Polysaccharides -- 2.2.1 Cellulose -- 2.2.2 Hemicellulose -- 2.2.2.1 Xyloglucan -- 2.2.2.2 Xylans -- 2.2.2.3 Mannans -- 2.2.3 Callose -- 2.2.4 Pectic Polysaccharides -- 2.2.4.1 Homogalacturonan (HG) -- 2.2.4.2 Arabinan -- 2.3 Algal Cell Wall Polysaccharides -- 2.3.1 Alginates -- 2.3.2 Sulfated Galactans -- 2.3.3 Fucoidans -- 2.4 Fungal Cell Wall Polysaccharides -- 2.4.1 Glucan -- 2.4.2 Chitin and Chitosan -- 2.5 Bacterial Cell Wall Polysaccharides -- 2.5.1 Peptidoglycan -- 2.5.2 Lipopolysaccharides -- References -- 3 Marine Polysaccharides: Properties and Applications -- 3.1 Introduction -- 3.2 Polysaccharide Origins -- 3.3 Properties -- 3.3.1 Cellulose -- 3.3.2 Chitosan -- 3.3.3 Alginate -- 3.3.4 Carrageenan -- 3.3.5 Agar -- 3.3.6 Porphyran -- 3.3.7 Fucoidan -- 3.3.8 Ulvan -- 3.3.9 Exopolysaccharides From Microalgae -- 3.4 Applications of Polysaccharides -- 3.4.1 Biomedical Applications -- 3.4.1.1 Cellulose -- 3.4.1.2 Chitosan. , 3.4.1.3 Alginate -- 3.4.2 Food Applications -- 3.4.2.1 Cellulose -- 3.4.2.2 Chitosan -- 3.4.2.3 Alginates -- 3.4.2.4 Carrageenan -- 3.4.2.5 Agar -- 3.4.3 Pharmaceutical and Nutraceutical Applications -- 3.4.3.1 Cellulose -- 3.4.3.2 Chitosan -- 3.4.3.3 Alginate -- 3.4.3.4 Carrageenan -- 3.4.3.5 Porphyran -- 3.4.3.6 Fucoidan -- 3.4.4 Agriculture -- 3.5 Conclusions -- References -- 4 Seaweed Polysaccharides: Structure, Extraction and Applications -- 4.1 Introduction -- 4.1.1 Agar -- 4.1.2 Carrageenan -- 4.1.3 Alginate (Alginic Acid, Algin) -- 4.1.4 Fucoidan -- 4.1.5 Laminaran -- 4.1.6 Ulvan -- 4.2 Conclusion -- References -- 5 Agars: Properties and Applications -- 5.1 History and Origin of Agar -- 5.1.1 Agarophytes Used in Agar Manufacturing -- 5.2 Physical Properties of Agar Producing Seaweeds -- 5.3 Agar Manufacturing -- 5.3.1 Types of Agar Manufacturing -- 5.3.1.1 Freeze-Thaw Method -- 5.3.1.2 Syneresis Method -- 5.4 Structure of Agar -- 5.5 Heterogeneity of Agar -- 5.6 Physico-Chemical Characteristics of Agar -- 5.7 Chemical Characteristics of Agar -- 5.8 Factors Influencing the Characteristics of Agar -- 5.8.1 Techniques to Analyze the Fine Chemical Structure of Agar -- 5.8.2 Synergies and Antagonisms of Agar Gels -- 5.9 Uses of Agar in Various Sectors -- 5.9.1 Applications of Agar in Food Industry -- 5.9.2 Application of Agar in Harvesting Insects and Worms -- 5.9.3 Vegetable Tissue Culture Formulations -- 5.9.4 Culture Media for Microbes -- 5.9.5 Industrial Applications of Agar -- 5.10 Conclusion and Discussion -- References -- 6 Biopolysaccharides: Properties and Applications -- 6.1 Structure and Classification of Biopolysaccharides -- 6.1.1 Structure -- 6.1.2 Classification -- 6.1.3 Structural Characterization Techniques -- 6.2 Uses and Applications of Biopolysaccharides -- 6.2.1 Functional Fibers -- 6.2.2 Biomedicine. , 6.2.2.1 Tissue Engineering -- 6.2.2.2 Wound Healing -- 6.2.2.3 Drug Loading and Delivery -- 6.2.2.4 Therapeutics -- 6.2.3 Cosmetics -- 6.2.4 Foods and Food Ingredients -- 6.2.5 Biofuels -- 6.2.6 Wastewater Treatment -- 6.2.7 Textiles -- 6.3 Conclusion -- References -- 7 Chitosan Derivatives: Properties and Applications -- 7.1 Introduction -- 7.2 Properties of Chitosan Derivatives -- 7.2.1 Physiochemical Properties -- 7.2.2 Functional Properties -- 7.2.3 Biological Properties of Chitosan -- 7.3 Applications of Chitosan Derivatives -- 7.3.1 Anticancer Agents -- 7.3.2 Bone Tissue Material Formation -- 7.3.3 Wound Healing, Tissue Regeneration and Antimicrobial Resistance -- 7.3.4 Drug Delivery -- 7.3.5 Chromatographic Separations -- 7.3.6 Waste Management -- 7.3.7 Food Industry -- 7.3.8 In Cosmetics -- 7.3.9 In Paint as Antifouling Coatings -- 7.4 Conclusions -- Acknowledgement -- References -- 8 Green Seaweed Polysaccharides Inventory of Nador Lagoon in North East Morocco -- 8.1 Introduction -- 8.2 Nador Lagoon: Situation and Characteristics -- 8.3 Seaweed -- 8.4 Polysaccharides in Seaweed -- 8.5 Algae Polysaccharides in Nador Lagoon's Seaweed -- 8.5.1 C. prolifera -- 8.5.1.1 Sulfated Galactans -- 8.5.2 U. rigida & -- E. intestinalis -- 8.5.2.1 Ulvan -- 8.5.3 C. adhaerens, C. bursa, C. tomentosum -- 8.5.3.1 Sulfated Arabinans -- 8.5.3.2 Sulfated Arabinogalactans -- 8.5.3.3 Mannans -- 8.6 Conclusion -- References -- 9 Salep Glucomannan: Properties and Applications -- 9.1 Introduction -- 9.2 Production -- 9.3 Composition and Physicochemical Structure -- 9.4 Rheological Properties -- 9.5 Purification and Deacetylation -- 9.6 Food Applications -- 9.6.1 Beverage -- 9.6.2 Ice Cream and Emulsion Stabilizing -- 9.6.3 Edible Film/Coating -- 9.6.4 Gelation -- 9.7 Health Benefits -- 9.8 Conclusions and Future Trends -- References. , 10 Exudate Tree Gums: Properties and Applications -- 10.1 Introduction -- 10.1.1 Gum Arabic -- 10.1.2 Gum Karaya -- 10.1.3 Gum Kondagogu -- 10.1.4 Gum Ghatti -- 10.1.5 Gum Tragacanth -- 10.1.6 Gum Olibanum -- 10.2 Nanobiotechnology Applications -- 10.3 Minor Tree Gums -- 10.4 Conclusions -- Acknowledgment -- References -- 11 Cellulose and its Derivatives: Properties and Applications -- 11.1 Introduction -- 11.2 Main Raw Materials -- 11.3 Composition and Chemical Structure of Lignocellulosic Materials -- 11.4 Cellulose: Chemical Backbone and Crystalline Formats -- 11.5 Cellulose Extraction -- 11.5.1 Mechanical Methods -- 11.5.2 Chemical Methods -- 11.6 Cellulose Products and its Derivatives -- 11.7 Main Applications -- 11.8 Conclusion -- References -- 12 Starch and its Derivatives: Properties and Applications -- 12.1 Introduction -- 12.2 Physicochemical and Functional Properties of Starch -- 12.2.1 Size, Morphology and Crystallinity of Starch Granules -- 12.2.2 Physical Properties due to Associated Lipids, Proteins and Phosphorus With Starch Granules -- 12.2.3 Solubility and Swelling Capacity of Starch -- 12.2.4 Gelatinization and Retrogradation of Starch -- 12.2.5 Birefringence and Glass Transition Temperature of Starch -- 12.2.6 Rheological and Thermal Properties of Starch -- 12.2.7 Transmittance and Opacity of Starch -- 12.2.8 Melt Processability of Starch -- 12.3 Modification of Starch -- 12.3.1 Physical Modification of Starch -- 12.3.2 Chemical Modification of Starch -- 12.3.3 Dual Modification of Starch -- 12.3.4 Enzymatic Modification of Starch -- 12.3.5 Genetic Modification of Starch -- 12.4 Application of Starch and its Derivatives -- 12.4.1 In Food Industry -- 12.4.2 In Paper Industry -- 12.4.3 Starch as Binders -- 12.4.4 In Detergent Products -- 12.4.5 As Biodegradable Thermoplastic Materials or Bioplastics. , 12.4.6 In Pharmaceutical and Cosmetic Industries -- 12.4.7 As Industrial Raw Materials -- 12.4.8 As Adsorbents for Environmental Applications -- 12.4.9 As Food Packaging Materials -- 12.4.10 In Drug Delivery -- 12.4.11 As Antimicrobial Films and Coatings -- 12.4.12 In Advanced Functional Materials -- 12.5 Conclusion -- References -- 13 Crystallization of Polysaccharides -- 13.1 Introduction -- 13.2 Principles of Crystallization of Polysaccharides -- 13.3 Techniques for Crystallinity Measurement -- 13.4 Crystallization Behavior of Polysaccharides -- 13.4.1 Cellulose -- 13.4.2 Chitosan and Chitin -- 13.4.3 Starch -- 13.5 Polymer/Polysaccharide Crystalline Nanocomposites -- 13.6 Conclusion -- References -- 14 Polysaccharides as Novel Materials for Tissue Engineering Applications -- 14.1 Introduction -- 14.2 Types of Scaffolds for Tissue Engineering -- 14.3 Biomaterials for Tissue Engineering -- 14.4 Polysaccharide-Based Scaffolds for Tissue Engineering -- 14.4.1 Alginate-Based Scaffolds -- 14.4.2 Chitosan-Based Scaffolds -- 14.4.3 Cellulose-Based Scaffolds -- 14.4.4 Dextran and Pullulan-Based Scaffolds -- 14.4.5 Starch-Based Scaffolds -- 14.4.6 Xanthan-Based Scaffolds -- 14.4.7 Glycosaminoglycans-Based Scaffolds -- 14.5 Current Challenges and Future Perspectives -- Acknowledgements -- References -- 15 Structure and Solubility of Polysaccharides -- 15.1 Introduction -- 15.2 Polysaccharide Structure and Solubility in Water -- 15.3 Solubility and Molecular Weight -- 15.4 Solubility and Branching -- 15.5 Polysaccharide Solutions -- 15.6 Conclusions -- Acknowledgments -- References -- 16 Polysaccharides: An Efficient Tool for Fabrication of Carbon Nanomaterials -- 16.1 Introduction -- 16.2 Aerogels -- 16.2.1 Plant and Bacterial Cellulose -- 16.2.2 Carbon Derived From Nanocrystalline Cellulose of Plant Origin. , 16.2.3 Carbon Aerogels Produced From Bacterial Cellulose.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...