GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-06-18
    Description: Paleo-climate records and geodynamic modelling indicate the existence of complex interactions between glacial sea level changes, volcanic degassing and atmospheric CO2, which may have modulated the climate system's descent into the last ice age. Between ∼85 and 70 kyr ago, during an interval of decreasing axial tilt, the orbital component in global temperature records gradually declined, while atmospheric CO2, instead of continuing its long-term correlation with Antarctic temperature, remained relatively stable. Here, based on novel global geodynamic models and the joint interpretation of paleo-proxy data as well as biogeochemical simulations, we show that a sea level fall in this interval caused enhanced pressure-release melting in the uppermost mantle, which may have induced a surge in magma and CO2 fluxes from mid-ocean ridges and oceanic hotspot volcanoes. Our results reveal a hitherto unrecognized negative feedback between glaciation and atmospheric CO2 predominantly controlled by marine volcanism on multi-millennial timescales of ∼5,000-15,000 years.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Nature Research
    In:  Scientific Reports, 8 . Art.Nr. 9985.
    Publication Date: 2021-03-19
    Description: The division of the earth’s surface into continents and oceans is a consequence of plate tectonics but a geological paradox exists at continent-ocean boundaries. Continental plate is thicker and lighter than oceanic plate, floating higher on the mantle asthenosphere, but it can rift apart by thinning and heating to form new oceans. In theory, continental plate subsides in proportion to the amount it is thinned and subsequently by the rate it cools down. However, seismic and borehole data from continental margins like the Atlantic show that the upper surface of many plates remains close to sea-level during rifting, inconsistent with its thickness, and subsides after breakup more rapidly than cooling predicts. Here we use numerical models to investigate the origin and nature of this puzzling behaviour with data from the Kwanza Basin, offshore Angola. We explore an idea where the continental plate is made increasingly buoyant during rifting by melt produced and trapped in the asthenosphere. Using finite element simulation, we demonstrate that partially molten asthenosphere combined with other mantle processes can counteract the subsidence effect of thinning plate, keeping it elevated by 2-3 km until breakup. Rapid subsidence occurs after breakup when melt is lost to the embryonic ocean ridge.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: slideshow
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Oceanic transform faults are seismically and tectonically active plate boundaries1 that leave scars—known as fracture zones—on oceanic plates that can cross entire ocean basins2. Current descriptions of plate tectonics assume transform faults to be conservative two-dimensional strike–slip boundaries1,3, at which lithosphere is neither created nor destroyed and along which the lithosphere cools and deepens as a function of the age of the plate4. However, a recent compilation of high-resolution multibeam bathymetric data from 41 oceanic transform faults and their associated fracture zones that covers all possible spreading rates shows that this assumption is incorrect. Here we show that the seafloor along transform faults is systemically deeper (by up to 1.6 kilometres) than their associated fracture zones, in contrast to expectations based on plate-cooling arguments. Accretion at intersections between oceanic ridges and transform faults seems to be strongly asymmetric: the outside corners of the intersections show shallower relief and more extensive magmatism, whereas the inside corners have deep nodal basins and seem to be magmatically starved. Three-dimensional viscoplastic numerical models show that plastic-shear failure within the deformation zone around the transform fault results in the plate boundary experiencing increasingly oblique shear at increasing depths below the seafloor. This results in extension around the inside corner, which thins the crust and lithosphere at the transform fault and is linked to deepening of the seafloor along the transform fault. Bathymetric data suggest that the thinned transform-fault crust is augmented by a second stage of magmatism as the transform fault intersects the opposing ridge axis. This makes accretion at transform-fault systems a two-stage process, fundamentally different from accretion elsewhere along mid-ocean ridges.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...