GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 437 (2005), S. 1003-1006 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Past hydrological changes in Africa have been linked to various climatic processes, depending on region and timescale. Long-term precipitation changes in the regions of northern and southern Africa influenced by the monsoons are thought to have been governed by precessional variations in summer ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer
    In:  EPIC3Integrated Analysis of Interglacial Climate Dynamics (INTERDYNAMIC), (SpringerBriefs in Earth System Sciences), Heidelberg, Springer, 139 p., pp. 109-114, ISBN: 978-3-319-00692-5, ISSN: 2191-589X
    Publication Date: 2015-02-04
    Description: To achieve a better understanding of the hydrologic evolution of the North-West (NW) African monsoon system during the Holocene, in particular during inferred abrupt climate changes at the end of the African Humid Period (AHP), we investigated terrigenous plant lipids deposited in marine sediments offshore NW Africa. Changes in rainfall amount were estimated by compound-specific hydrogen isotope (δD) analyses. The spatial gradient of rainfall isotopic compositions is reflected in marine surface sediments. δD changes in plant waxes covering the last 100 years confirm the observed decrease in rainfall during the late twentieth century Sahel drought, and thus can be used for a quantitative calibration of δD and pre- cipitation. δD changes in sedimentary plant waxes show no abrupt change at the end of the AHP suggesting a gradual precipitation decline. These results are supported by Holocene climate simulations using a coupled atmosphere-land surface model, which includes an explicit modeling of isotopic fractionation within the hydrological cycle.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...