GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Physiologia plantarum 112 (2001), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The phycobilisomes (PBS), the light-harvesting antennae, from the endemic Antarctic red macroalga Palmaria decipiens were isolated on discontinuous sucrose gradients in two discrete bands and not in one as expected. To exclude methodical faults, we also isolated PBS from the temperate Palmaria palmata and the unicellular red algae Porphyridium cruentum and Rhodella violacea. In P. palmata the PBS were separated in two discrete bands, whereas the PBS from Porphyridium and Rhodella were found in one band. The double-banded PBS (PBSup and PBSlow) from P. decipiens were further characterized by absorption and fluorescence spectroscopy, native and SDS-PAGE as well as by negative staining. The phycobiliproteins RIII-phycoerythrin, RI-phycocyanin and allophycocyanin were identified and 3 γ-subunits were described. The PBSup and PBSlow showed no significant differences in their absorption spectra and phycobiliprotein ratios although the negative stained PBSlow were smaller. Differences were found in their low molecular mass subunit complexes, which are assumed to be r-phycoerythrin. The polypeptide pattern of the PBSup and PBSlow showed no differences in the molecular masses of their subunits and linker polypeptides, but in their percentage distribution. The results suggest that the PBSlow is a closer packed and PBSup a little more loosely aggregated hemiellipsiodal PBS form. We discuss the ecophysiological function of two PBS forms in P. decipiens and suggest advantages in the rapid acclimation to changes in environmental light conditions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: In field studies conducted at the Kongsfjord (Spitsbergen), the effect of filtered natural radiation conditions (solar without ulraviolet [UV]-A+UV-B, solar without UV-B, solar) on photosynthesis and the metabolism of UV-absorbing mycosporine-like amino acids (MAAs) in the marine red alga Devaleraea ramentacea have been studied. While solar treatment without UV-A+UV-B did not affect photosynthesis during the course of a day, solar without UV-B and the full solar spectrum led to a strong inhibition. However, after offset of the various radiation conditions, all algae fully recovered. Isolates collected from different depths were exposed in the laboratory to artificial fluence rates of photosynthetic active radiation (PAR), PAR+UV-A, and PAR+UV-A+UV-B. The photosynthetic capacity was affected in accordance with the original sampling depth, i.e. shallow-water isolates were more resistant than algae from deeper waters, indicating that D. ramentacea is able to acclimate to changes in irradiance. Seven different UV-absorbing MAAs were detected in this alga, namely mycosporine-glycine, shinorine, porphyra-334, palythine, asterina-330, palythinol, and palythene. The total amount of MAAs continuously decreased with increasing collecting depth when sampled in mid June, and algae taken in late August from the same depths contained on average 30–45% higher MAA concentrations, indicating a seasonal effect as well. The presence of increasing MAA contents with decreasing depth correlated with a more insensitive photosynthetic capacity under both UV-A and UV-B treatments. Populations of D. ramentacea collected from 1 m depth, with one fully exposed to solar radiation and the other growing protected as understorey vegetation underneath the kelp Laminaria saccharina, exhibited quantitatively different MAA compositions in the apices. The exposed seaweeds contained 2.5-fold higher MAA values compared with the more shaded algae. Moreover, the exposed isolates showed a strong tissue gradient in MAAs, pigments, and proteins. The green apices contained 5-fold higher MAA contents than the red bases. Transplantation of D. ramentacea from 2 m depth to the surface induced the formation and accumulation of MAAs after 1 week exposure to the full solar spectrum. Control samples which were treated with the solar spectrum without UV-A+B or with solar without UV-B showed unchanged MAA contents, indicating a strong UV-B effect on MAA metabolism. All data well supported the suggested physiological function of MAAs as natural UV sunscreens in macroalgae.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...