GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: Perovskite supercapacitors have a promising future in the area of energy storage; due to their superior optoelectronic characteristics, simple device construction and increased efficiency.
    Type of Medium: Online Resource
    Pages: 1 online resource (186 pages)
    Edition: 1st ed.
    ISBN: 9781644902738
    Series Statement: Materials Research Foundations Series ; v.151
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Organic-Inorganic Perovskite Based Solar Cells -- 1. Introduction -- 2. Silicon Solar Cells (SSCs) -- 3. Perovskites-Based Solar Cells (PSCs) -- 3.1 Structure of PSCs -- 3.2 Optoelectronic Properties Of PSCs -- 3.3 Influence of A, B, and X site -- 3.3.1 A-Site -- 3.3.2 B-Site -- 3.3.3 X-Site -- 4. Mixed Concentration of Perovskite Absorbing Layer -- 4.1 A-site -- 4.4 Mixed B-Sites Cations -- 4.5 X-Site -- 5. Requirements for Each Layer -- 5.1 Electron Transport Layer -- 5.1.1 Different ETL Material Used In Perovskite Cells -- 5.2 Hole Transporting Layer -- 5.2.1 Hole Transporting Material (HTM) -- 5.2.2 Inorganic P-type semiconductors as HTMs -- 5.2.3 Organometallic HTMs -- 5.3 Absorbing Layer -- 5.3.1 Preparation Method of The Perovskite Light Absorbing Layer -- 6. Fabrication Techniques -- 6.1 One-Step Deposition -- 6.2 Two-Step Deposition -- 6.3 Vapor Deposition Method -- 6.4 Spin Coating -- 6.4.1 One-Step Spin Coating -- 6.4.2 Two-Step Spin Coating -- 6.5 Thermal Vapor Deposition -- 7. Challenges in Perovskite-Based Solar Cells -- 7.1 Stability Challenges -- 7.2 Thermal Effect -- 7.3 Toxicity -- 7.4 J-V Hysteresis -- 8. Efficiency of Perovskite -- 9. Future Perspectives -- Conclusion -- References -- 2 -- Organometallic Halides-Based Perovskite Solar Cells -- 1. Introduction -- 1.1 Carbon-based energy sources -- 1.2 The global trend toward renewable energy resources -- 1.3 Era of Solar Cell (SCs) technology -- 1.4 Green energy (Carbon free) -- 2. Photovoltaic effect -- 2.1 Discovery of Sir Alexander Edmond Becquerel -- 2.2 Development of solar cells -- 2.3 Generations -- 2.4 Types of 3rd generation of SCs -- 3. Perovskite-based solar cells -- 3.1 Introduction to perovskite compounds -- 3.2 Classification of perovskite -- 3.3 Organometallic halide-based perovskite (OMHP) solar cells. , 3.4 Evolutionary history of perovskite solar cells with their efficiency -- 3.4.1 Open-circuit voltage (OCV) -- 3.4.2 Short-circuit voltage (Jsc) -- 3.4.3 Fill factor (FF) -- 3.5 Crystal structure of organometallic halides-based perovskite solar cells -- 3.6 Behavior of OMHP with different combinations of A, B, and X -- 3.6.1 A-site cations -- 3.6.2 B-site cations -- 3.6.3 X-site anions -- 3.6.3.1 Iodide (I) anion -- 3.6.3.2 Chloride (Cl) anion -- 3.6.3.3 Bromide (Br) anion -- 3.7 Goldschmidt tolerance factor ( ) -- 3.8 Octahedral factor (OF) -- 4. Important Parameters of Organometallic Halide-Based Perovskite (OMHP) -- 4.1 Charge transport (CT) -- 4.2 Diffusion length and mobility of charge carriers -- 4.3 Electronic structure (ES) -- 4.4 Effect of effective masses of holes and electron carriers -- 5. Environmental instability of organometallic halides-based perovskites (OMHPs) solar cells -- 5.1 Degradation and stability issue -- 5.2 Effect of moisture -- 5.3 Effect of temperature -- 5.4 Effect of oxygen and light -- 6. Recent development in the OMHP solar cells -- 6.1 Ion migration and the suppression of ions -- 6.2 Solvent engineering -- 6.3 Annealing -- 6.4 2D/3D technology -- 6.5 Organometallic halides-based perovskite quantum dot solar cells -- 6.6 Solid-state hole conductor-free (HCF) OMHP-SCs -- 6.7 Tandem perovskite solar cells (TPSCs) -- 6.8 Passivation of OMHP-SCs -- Conclusion -- References -- 3 -- Perovskite Based Ferroelectric Materials for Energy Storage Devices -- 1. Introduction -- 2. Ferroelectricity -- 3. Ferroelectric Perovskites -- 4. Lead-Based Perovskite Ferroelectrics -- 4.1 Niobate-Based Ferroelectrics -- 4.2 Lanthanum Based Ferroelectrics -- 4.3 Lead-Free Perovskite Ferroelectrics -- 4.3.1 Barium Titanate Based Ferroelectric -- 4.3.2 Alkaline Niobate Based Ferroelectric -- 4.3.3 Bismuth Based Ferroelectrics. , 5. Energy Storage Devices -- 5.1 Types of Energy Storage Devices -- 5.1.1 Battery Energy Storage -- 5.1.2 Thermal Energy Storage -- 5.1.3 Pumped Hydroelectric Energy Storage -- 5.1.4 Mechanical Energy Storage -- 5.1.5 Hydrogen Energy Storage -- 6. Transport Properties -- 7. Energy Density of Ferroelectrics -- 7.1 Ways to Improve Energy Density -- 7.1.1 Chemical Substitution -- 8. High Energy Efficiency Perovskite Solar Cells -- 9. Ferroelectrics for Energy Storage Devices -- 9.1 Fuel Cells -- 9.2 Photocatalysts -- 9.2.1 Characterization and Preparation of Photo Catalysts -- 9.3 Capacitive Energy Storage Devices -- Conclusion -- References -- 4 -- Techniques for Recycling and Recovery of Perovskites Solar Cells -- 1. Introduction -- 1.1 Recycling Roadmap -- 1.2 Delamination of perovskite solar cell modules -- 3. Need of recycling -- 3.1 Degradation of perovskite solar cells -- 3.2 Use of expensive raw materials -- 3.3 Toxicity behavior of lead -- 4. Recycling of several parts of perovskite solar cells -- 4.1 Recycling of transparent conducting oxide (TCO) -- 4.2 Recycling of Electron Transport Layer (ETL) -- 4.3 Recycling of toxic lead component -- 4.4 Recycling of metal electrodes -- 4.5 Recycling of monolithic structure -- 5. Future challenges -- 6. Analysis of cost -- Conclusion and future perspective -- Conflict of interest -- Acknowledgment -- References -- 5 -- Lead-Free Perovskite Solar Cells -- 1. Introduction -- 2. Categories of Lead-Free Perovskite Solar Cells (PSCs) -- 2.1 Tin-Based PSCs -- 2.2 Germanium-Based PSCs -- 2.3 Antimony and bismuth-based PSCs -- 2.4 Halide double perovskites (HDPs) -- 3. Improvement Scopes in Lead-Free PSCs -- 3.1 Photovoltaic Efficiency -- 3.2 Stability -- 3.3 Defect Parameter Characterization and Defect Tolerance -- 3.4 Charge Transport Characterization -- 3.5 Electronic Dimensionality. , 4. Processing of High-Quality Lead-Free Perovskite Films -- 4.1 Vapour deposition method -- 4.2 Anti-Solvent Technique -- 4.3 Solution Processing -- 4.4 Two-Step Deposition -- 4.5 Low Pressure Assisted Solution Processing -- 4.6 Spin Coating -- 4.7 Inter-diffusion Method -- 4.8 Doctor Blade Coating -- 4.9 Vacuum Flash-Assisted Solution Process (VASP) -- 4.10 Complex Assisted Gas Quenching (CAGQ) method -- 4.11 Soft Cover Deposition (SCD) -- Conclusion and outlook -- References -- 6 -- Technical Potential Evaluation of Inorganic Tin Perovskite Solar Cells -- 1. Introduction -- 2. Inorganic tin perovskite solar cells parameters used in AHP analysis -- 3. AHP Methodology -- 4. Results and discussion -- Conclusions -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book is concerned with the use of Artificial Intelligence in the discovery, production and application of new engineering materials.
    Type of Medium: Online Resource
    Pages: 1 online resource (147 pages)
    Edition: 1st ed.
    ISBN: 9781644902530
    Series Statement: Materials Research Foundations Series ; v.147
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Artificial Intelligence Nano-Robots -- 1. Introduction -- 2. Composites -- 2.1 Liquid crystal elastomers -- 2.2 Shape memory polymers -- 2.3 Hydrogels -- 2.4 CNT actuators -- 2.5 Conducting polymers -- 3. Components and materials -- 4. Movement in nanorobots -- 5. Mechanism and stimulation -- 6. Trust dimensions -- 6.1 Reliability and safety -- 6.2 Explainability and interpretability -- 6.3 Privacy and security -- 6.4 Performance and robustness -- 7. Actuators -- 7.1 Thermally responsive actuators -- 7.2 Photo-responsive actuators -- 7.3 Magnetically responsive actuators -- 7.4 Electrically responsive actuators -- 8. Applications -- 8.1 Cancer detection and its treatment -- 8.2 Nanorobots in the diagnosis and treatment of diabetes -- 8.3 Artificial oxygen carrier nanorobot -- 9. Future challenges -- Conclusion and future scope -- Conflict of interest -- Acknowledgment -- References -- 2 -- Data Mining in Material Science -- 1. Introduction -- 2. Machine learning and materials science -- 3. ML algorithms in materials science -- 4. Steps in machine learning for materials science -- 4.1 Experience -- 4.2 Task -- 4.3 Classification -- 4.4 Regression -- 4.5 Clustering -- 4.6 Dimension reduction and conception -- 4.7 Efficient searching -- 4.8 Performance measure -- 4.9 Model particulars -- 4.10 Supervised model -- Conclusion -- References -- 3 -- Artificial Intelligence Applications in Solar Photovoltaic Renewable Energy Systems -- 1. Introduction -- 1.1 Overview of Solar PV Renewable Energy System and Artificial Intelligence (AI) Technology -- 1.2 Solar energy generation -- 1.3 Classification of solar energy technologies (SET) -- 1.3.1 Concentrated solar-thermal power (CSP) -- 1.3.2 Solar photovoltaic energy -- 2. Artificial intelligence (AI) -- 2.1 Machine learning -- 2.2 Deep learning. , 2.2.1 Convolutional neural networks (CNNs) -- 2.2.2 Long short-term memory (LSTM) -- 2.2.3 Generative adversarial network (GAN) -- 3. Application of AI in solar PV system -- 3.1 Monitoring of PV systems -- 3.2 PV fault detection and diagnosis (FDD) methods -- 3.3 Employment of AI technologies for sizing PV systems -- 3.4 Modelling of a solar PV generator -- 3.5 Solar water heating systems (SWHs) -- 4. Challenges of effective AI application in solar PV system -- 4.1 Solar energy optimization -- 4.2 PV-dependent hybrid facility optimization -- 4.3 External factors of solar energy generation -- 4.4 Challenges in the development of solar energy systems -- 4.5 Solar energy transformation -- 5. Prospects and future work consideration -- Conclusion -- References -- 4 -- Artificial Intelligence in Material Genomics -- 1. Introduction -- 2. Material genomics -- 3. Strength of artificial intelligence -- 4. Artificial intelligence in material genomics -- Conclusion -- References -- 5 -- Applications of Artificial Intelligence in Polymer Manufacturing -- 1. Introduction -- 1.1 Advantages and disadvantages of artificial intelligence in polymer manufacturing -- 2. Classification of artificial intelligence -- 2.1 Classification of AI based on capabilities -- 3. Key Developments and commercialization in the polymer industry -- 4. Application of artificial intelligence in polymer manufacturing -- 4.1 Artificial intelligence and polymer manufacturing -- 4.2 Biodegradable polymers and artificial intelligence -- 4.3 Artificial intelligence and packaging industries -- 4.4 Agriculture and artificial intelligence -- 4.5 Healthcare and artificial intelligence -- 4.6 Artificial intelligence and dentistry -- 4.7 Food industry and artificial intelligence -- 4.8 Cosmetic artificial intelligence -- 5. Future prospects and conventional challenges. , 6. Guidelines, rules, and regulations for polymeric manufacturing -- Conclusion -- Acknowledgment -- Conflict of Interest -- Reference -- 6 -- Artificial Intelligence for Energy Conversion -- 1. Introduction -- 2. Alternative sources of energy and artificial intelligence -- 3. Machine learning and its application in material sciences -- 4. Limitation of principled method and how ML can intervene -- 5. Applications of AI in the domain of energy conversions -- 5.1 AI in photonics -- 5.2 AI in electrochemical catalyst -- 5.3 AI in electrolysis -- 5.4 AI in fuel cell technology -- Conclusions -- Acknowledgments -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Online Resource
    Online Resource
    Singapore : Springer Singapore | Singapore : Imprint: Springer
    Keywords: Microbiology. ; Plant biochemistry. ; Microbial ecology. ; Plant physiology.
    Description / Table of Contents: Chapter 1. Antimicrobial polymers -- Chapter 2. Starch based antimicrobial materials -- Chapter 3. Cellulose-based antimicrobial materials -- Chapter 4. Polymerized ionic liquids as antimicrobial materials -- Chapter 5. Silver composites as antimicrobial materials -- Chapter 6. Natural antimicrobial materials -- Chapter 7. Advanced antimicrobial materials and applications -- Chapter 8. Antimicrobial magnetic nanoparticles: A potential antibiotic Agent in The Era of multi-drug resistance -- Chapter 9. Antifungal, antimycotoxigenic, and antioxidant activity of essential oils and medicinal plant extracts -- Chapter 10. Antibacterial Electrospun nanofibres -- Chapter 11. Plant extracts: antimicrobial properties, mechanisms of action and applications -- Chapter 12. Antimicrobial materials for local drug delivery -- Chapter 13. Antimicrobial membranes for water treatment -- Chapter 14. Antimicrobial fillers for dental restorative materials -- Chapter 15. Molecular imprinting technology: A new approach for antibacterial materials.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VII, 421 p. 155 illus., 71 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9789811570988
    Series Statement: Environmental and Microbial Biotechnology
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...