GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book focuses on the applications of ion exchange resins in processes.
    Type of Medium: Online Resource
    Pages: 1 online resource (175 pages)
    Edition: 1st ed.
    ISBN: 9781644902219
    Series Statement: Materials Research Foundations Series ; v.137
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Applications of Ion Exchange Resins in Protein Separation and Purification -- 1. Introduction -- 2. Types of ion exchange resins -- 3. Functionalization of ion exchange resin -- 4. Characterization of ion exchange resin -- 4.1 Elemental analysis -- 4.2 FT-IR spectra -- 4.3 Thermogravimetric analysis -- 5. Analysis of variables for protein IEC -- 5.1 Stability and pI of proteins -- 5.2 Effect of the support on the chromatographic separation of proteins -- 5.3 Effect of buffer and mobile phase -- 6. Steps of protein separation by IEC -- 7. Types of protein purified by IEC -- 8. Future prospects of IEC -- Acknowledgments -- References -- 2 -- Applications of Ion Exchange Resins in Vitamins Separation and Purification -- 1. Introduction -- 2. Importance of vitamins -- 3. Categorisation of vitamins -- 3.1 Water soluble vitamins -- 3.2 Fat soluble vitamins -- 4. Origin of vitamins -- 5. Isolation and purgation of vitamin -- 6. Ion-exchange chromatography -- 7. Ion exchange chromatographic isolation and purgation of vitamin K1 -- 8. Ion exchange chromatographic isolation and purgation of vitamin C -- 9. Ion exchange chromatographic isolation and purgation of vitamin B1, vitamin B2 and vitamin B6 -- Conclusion -- References -- 3 -- Application of Ion Exchange Resins in Protein Separation and Purification -- 1. Basic principle of protein separation and purification by chromatographic method -- 2. Chromatographic methods of protein purification -- 2.1 Gel filtration or permeation chromatography -- 2.2 Affinity chromatography -- 2.3 Immuno affinity chromatography -- 2.4 Metal chelate chromatography -- 2.5 Other Chromatographic techniques -- 3. Principle of separation of proteins by ion exchange chromatography -- 4. Strong and weak ion exchange resin -- 5. Choice of buffer. , 6. Experimental procedure of ion exchange resin -- 6.1 Equilibration -- 6.2 Sample Application and Wash -- 6.3 Elution -- 6.4 Regeneration -- 7. Morphology of ion exchange resin -- 7.1 Capacity of ion exchange resin -- 7.2 Stability -- 7.3 Cross linking of resins -- 7.4 Donnan equilibrium -- 8. Parameters for optimisation of ion exchange methods -- 8.1 Resolution -- 8.2 Efficiency -- 8.3 Selectivity -- Summary -- References -- 4 -- Ion Exchange Resins for Selective Separation of Toxic Metals -- 1. Introduction -- 2. Ion exchange resins (IERs) -- 3. Type of IERs -- 4. Synthesis of IERs -- 5. Uses of IERs -- 6. Activity of IERs -- 7. Properties of IERs -- 7.1 IE capacity of resin -- 7.2 Water retention capacity of ion exchange resin -- 7.3 Density of ion exchange resin -- 7.4 Surface area of ion exchange resin -- 7.5 Regeneration of ion exchange resin -- 8. Selectivity of IERs -- 9. Toxic metals -- 10. Selective separation of toxic metals -- 11. Modern ion exchange separation method in industry and its future prospects -- Conclusion -- References -- 5 -- Separation and Purification of Bioactive Molecules by Ion Exchange -- 1. Introduction -- 1.1 Reversed phase chromatography -- 2. Polymeric sorbents for preparative chromatography of biologically active compounds -- 2.1 Designing a biochemical purification -- 3. Ion-exchange separation and purification of polyphenols -- 3.1 Separation of bioactive catechin derivatives by AEC -- 4. Ion-exchange separation and purification of protein -- 5. Use of ion-exchange chromatography for the separation of peptide -- 5.1 Separation of human C-peptide by ion exchange -- 6. Separation of Alkaloids from Chinese Medicines by ion-exchange -- 7. Separation of plasmid DNA using ion-exchange chromatography -- 8. Separation of carbohydrates from seaweed using ion-exchange chromatography -- 9. Future Prospects -- References. , 6 -- Ion Exchange Resins as Carriers for Sustained Drug Release -- 1. Introduction -- 2. Principles of sustained drug release -- 2.1 Evolution of sustained drug delivery systems -- 2.2.1 First-generation delivery systems -- 2.2.2 Second-generation delivery systems -- 2.2.3 Third/ Next generation delivery systems -- 3. Types of sustained drug delivery systems -- 3.1 Diffusion-controlled system -- 3.1.1 Reservoir system -- 3.1.2 Matrix system -- 3.2 Osmotic system -- 3.3 Floating system -- 3.4 Bioadhesive system -- 3.5 Liposome system -- 4. IERs as drug delivery systems -- 4.1 Chemistry of IERs -- 4.2. Complexation of IER and the drug -- 4.2.1 Selection of the drug -- 4.2.2 Purification of resins -- 4.2.3 Drug loading -- 4.2.3.1 Batch method -- 4.2.3.2 Column method -- 4.2.4 Factors affecting drug loading -- 4.2.4.1 Particle size -- 4.2.4.2 Porosity and swelling -- 4.2.4.3 Available capacity -- 4.2.4.4 Acid-base strength -- 4.2.5 Evaluation of drug resinates -- 5. Modified resinates -- 6. Release kinetics of drugs complexed with IERs -- 7. Efficiency of IERs as the delivery mechanism -- 7.1 Oral drugs -- 7.2 Nasal drugs -- 7.3 Ophthalmic drugs -- 7.4 Oro-dispersible films (ODF) -- 7.5 Oral liquid suspensions -- 8. Commercial IERs used in sustained drug delivery -- 8.1 Dowex 50W -- 8.2 Indion 244 -- 8.3 Amberlite IRP-69 -- 9. Future perspectives -- References -- 7 -- Ion Exchange Resins for Clinical Applications -- 1. Introduction -- 2. Application of resins in formulation-related issues -- 2.1 Taste development -- 2.2 Aiding in dissolution -- 2.3 Role as disintegrating agents -- 2.4 Drug stabilization -- 2.5 Water purification for the production of pharmaceuticals -- 2.6 Anti-deliquescence -- 3. Applications in drug release systems -- 3.1 Simple resinates -- 3.2 Microencapsulated resinates -- 3.3 Hollow fiber system -- 3.4 Gastric retentive system. , 3.5 Sigmoidal release system -- 4. Applications in targeted drug delivery -- 4.1 Oral drug delivery -- 4.2 Nasal drug delivery -- 4.3 Transdermal drug delivery -- 4.4 Ophthalmic drug delivery -- 4.5 Application in cancer treatment -- 5. Applications in therapeutics -- 5.1 High cholesterol treatment -- 5.2 Application in treatment of pruritus -- 5.3 Applications in treating of oedema -- 5.4 Application in the treatment of cardiac oedema -- 5.5 Applications as antacids -- 5.6 Treating uremia -- Conclusion -- References -- 8 -- Applications of Ion Exchange Resins in Water Softening -- 1. Introduction -- 2. Water hardness -- 2.1 Salts providing hardness -- 2.2 Negative effect of water hardness -- 3. Ion exchange resins for water softening -- 3.1 Strongly acidic resins -- 3.2 Weakly acidic resins -- 3.3 Polymer-inorganic resins -- 4. Regeneration of ion exchange resins and their fouling -- 5. Ion exchange in a combination with other processes -- 5.1 Ion exchange and ultrasound -- 5.2 Ion exchange and electrodialysis -- Conclusions -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: Perovskite supercapacitors have a promising future in the area of energy storage; due to their superior optoelectronic characteristics, simple device construction and increased efficiency.
    Type of Medium: Online Resource
    Pages: 1 online resource (186 pages)
    Edition: 1st ed.
    ISBN: 9781644902738
    Series Statement: Materials Research Foundations Series ; v.151
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Organic-Inorganic Perovskite Based Solar Cells -- 1. Introduction -- 2. Silicon Solar Cells (SSCs) -- 3. Perovskites-Based Solar Cells (PSCs) -- 3.1 Structure of PSCs -- 3.2 Optoelectronic Properties Of PSCs -- 3.3 Influence of A, B, and X site -- 3.3.1 A-Site -- 3.3.2 B-Site -- 3.3.3 X-Site -- 4. Mixed Concentration of Perovskite Absorbing Layer -- 4.1 A-site -- 4.4 Mixed B-Sites Cations -- 4.5 X-Site -- 5. Requirements for Each Layer -- 5.1 Electron Transport Layer -- 5.1.1 Different ETL Material Used In Perovskite Cells -- 5.2 Hole Transporting Layer -- 5.2.1 Hole Transporting Material (HTM) -- 5.2.2 Inorganic P-type semiconductors as HTMs -- 5.2.3 Organometallic HTMs -- 5.3 Absorbing Layer -- 5.3.1 Preparation Method of The Perovskite Light Absorbing Layer -- 6. Fabrication Techniques -- 6.1 One-Step Deposition -- 6.2 Two-Step Deposition -- 6.3 Vapor Deposition Method -- 6.4 Spin Coating -- 6.4.1 One-Step Spin Coating -- 6.4.2 Two-Step Spin Coating -- 6.5 Thermal Vapor Deposition -- 7. Challenges in Perovskite-Based Solar Cells -- 7.1 Stability Challenges -- 7.2 Thermal Effect -- 7.3 Toxicity -- 7.4 J-V Hysteresis -- 8. Efficiency of Perovskite -- 9. Future Perspectives -- Conclusion -- References -- 2 -- Organometallic Halides-Based Perovskite Solar Cells -- 1. Introduction -- 1.1 Carbon-based energy sources -- 1.2 The global trend toward renewable energy resources -- 1.3 Era of Solar Cell (SCs) technology -- 1.4 Green energy (Carbon free) -- 2. Photovoltaic effect -- 2.1 Discovery of Sir Alexander Edmond Becquerel -- 2.2 Development of solar cells -- 2.3 Generations -- 2.4 Types of 3rd generation of SCs -- 3. Perovskite-based solar cells -- 3.1 Introduction to perovskite compounds -- 3.2 Classification of perovskite -- 3.3 Organometallic halide-based perovskite (OMHP) solar cells. , 3.4 Evolutionary history of perovskite solar cells with their efficiency -- 3.4.1 Open-circuit voltage (OCV) -- 3.4.2 Short-circuit voltage (Jsc) -- 3.4.3 Fill factor (FF) -- 3.5 Crystal structure of organometallic halides-based perovskite solar cells -- 3.6 Behavior of OMHP with different combinations of A, B, and X -- 3.6.1 A-site cations -- 3.6.2 B-site cations -- 3.6.3 X-site anions -- 3.6.3.1 Iodide (I) anion -- 3.6.3.2 Chloride (Cl) anion -- 3.6.3.3 Bromide (Br) anion -- 3.7 Goldschmidt tolerance factor ( ) -- 3.8 Octahedral factor (OF) -- 4. Important Parameters of Organometallic Halide-Based Perovskite (OMHP) -- 4.1 Charge transport (CT) -- 4.2 Diffusion length and mobility of charge carriers -- 4.3 Electronic structure (ES) -- 4.4 Effect of effective masses of holes and electron carriers -- 5. Environmental instability of organometallic halides-based perovskites (OMHPs) solar cells -- 5.1 Degradation and stability issue -- 5.2 Effect of moisture -- 5.3 Effect of temperature -- 5.4 Effect of oxygen and light -- 6. Recent development in the OMHP solar cells -- 6.1 Ion migration and the suppression of ions -- 6.2 Solvent engineering -- 6.3 Annealing -- 6.4 2D/3D technology -- 6.5 Organometallic halides-based perovskite quantum dot solar cells -- 6.6 Solid-state hole conductor-free (HCF) OMHP-SCs -- 6.7 Tandem perovskite solar cells (TPSCs) -- 6.8 Passivation of OMHP-SCs -- Conclusion -- References -- 3 -- Perovskite Based Ferroelectric Materials for Energy Storage Devices -- 1. Introduction -- 2. Ferroelectricity -- 3. Ferroelectric Perovskites -- 4. Lead-Based Perovskite Ferroelectrics -- 4.1 Niobate-Based Ferroelectrics -- 4.2 Lanthanum Based Ferroelectrics -- 4.3 Lead-Free Perovskite Ferroelectrics -- 4.3.1 Barium Titanate Based Ferroelectric -- 4.3.2 Alkaline Niobate Based Ferroelectric -- 4.3.3 Bismuth Based Ferroelectrics. , 5. Energy Storage Devices -- 5.1 Types of Energy Storage Devices -- 5.1.1 Battery Energy Storage -- 5.1.2 Thermal Energy Storage -- 5.1.3 Pumped Hydroelectric Energy Storage -- 5.1.4 Mechanical Energy Storage -- 5.1.5 Hydrogen Energy Storage -- 6. Transport Properties -- 7. Energy Density of Ferroelectrics -- 7.1 Ways to Improve Energy Density -- 7.1.1 Chemical Substitution -- 8. High Energy Efficiency Perovskite Solar Cells -- 9. Ferroelectrics for Energy Storage Devices -- 9.1 Fuel Cells -- 9.2 Photocatalysts -- 9.2.1 Characterization and Preparation of Photo Catalysts -- 9.3 Capacitive Energy Storage Devices -- Conclusion -- References -- 4 -- Techniques for Recycling and Recovery of Perovskites Solar Cells -- 1. Introduction -- 1.1 Recycling Roadmap -- 1.2 Delamination of perovskite solar cell modules -- 3. Need of recycling -- 3.1 Degradation of perovskite solar cells -- 3.2 Use of expensive raw materials -- 3.3 Toxicity behavior of lead -- 4. Recycling of several parts of perovskite solar cells -- 4.1 Recycling of transparent conducting oxide (TCO) -- 4.2 Recycling of Electron Transport Layer (ETL) -- 4.3 Recycling of toxic lead component -- 4.4 Recycling of metal electrodes -- 4.5 Recycling of monolithic structure -- 5. Future challenges -- 6. Analysis of cost -- Conclusion and future perspective -- Conflict of interest -- Acknowledgment -- References -- 5 -- Lead-Free Perovskite Solar Cells -- 1. Introduction -- 2. Categories of Lead-Free Perovskite Solar Cells (PSCs) -- 2.1 Tin-Based PSCs -- 2.2 Germanium-Based PSCs -- 2.3 Antimony and bismuth-based PSCs -- 2.4 Halide double perovskites (HDPs) -- 3. Improvement Scopes in Lead-Free PSCs -- 3.1 Photovoltaic Efficiency -- 3.2 Stability -- 3.3 Defect Parameter Characterization and Defect Tolerance -- 3.4 Charge Transport Characterization -- 3.5 Electronic Dimensionality. , 4. Processing of High-Quality Lead-Free Perovskite Films -- 4.1 Vapour deposition method -- 4.2 Anti-Solvent Technique -- 4.3 Solution Processing -- 4.4 Two-Step Deposition -- 4.5 Low Pressure Assisted Solution Processing -- 4.6 Spin Coating -- 4.7 Inter-diffusion Method -- 4.8 Doctor Blade Coating -- 4.9 Vacuum Flash-Assisted Solution Process (VASP) -- 4.10 Complex Assisted Gas Quenching (CAGQ) method -- 4.11 Soft Cover Deposition (SCD) -- Conclusion and outlook -- References -- 6 -- Technical Potential Evaluation of Inorganic Tin Perovskite Solar Cells -- 1. Introduction -- 2. Inorganic tin perovskite solar cells parameters used in AHP analysis -- 3. AHP Methodology -- 4. Results and discussion -- Conclusions -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book presents the current status of superconductor science and technology.
    Type of Medium: Online Resource
    Pages: 1 online resource (266 pages)
    Edition: 1st ed.
    ISBN: 9781644902110
    Series Statement: Materials Research Foundations Series ; v.132
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Basic Concepts and Properties of Superconductors -- 1. Introduction and background -- 2. History of superconductors -- 3. Superconductors vs perfect conductors -- 4. Phenomenon of superconductivity -- 4.1 Zero resistance -- 4.2 Super-electron -- 4.3 Critical temperature for superconductors -- 5. Classification of superconductors -- 6. Properties of superconductor -- 6.1 Evanesce of electrical resistance -- 6.2 Flux lines and diamagnetism -- 6.3 Flux quantization in superconductors -- 6.4 Quantum interference -- 6.5 Josephson current -- Conclusion -- References -- 2 -- Properties and Types of Superconductors -- 1. Introduction -- 1.1 The Meissner effect and superconductors -- 2. History of superconductors -- 3. Types of superconductors -- 3.1 Type I superconductors -- 3.1.1 Examples -- 3.2 Type II superconductors -- 3.2.1 Examples -- 4. Comparisons between type I and type II superconductors -- 4.1 Meissner effect -- 4.2 Conduction of electrons -- 4.3 Surface energy -- 5. Superconducting materials -- 5.1 Metal based system superconductors -- 5.2 Copper oxides (Cuprates) -- 5.3 Iron based superconductors -- 6. Properties of superconductors -- Conclusion -- References -- 3 -- Fundamentals and Properties of Superconductors -- 1. Introduction -- 2. Types of superconductors -- 2.1 Type I and II superconductors -- 2.2 Organic superconductors -- 2.3 Magnetic superconductors -- 2.4 High temperature superconductors (HTS) -- 3. Properties of superconductors -- 3.1 Zero electric resistance -- 3.2 Meissner effect -- 3.3 Transition temperature -- 3.4 Critical current -- 3.5 Persistent currents -- 3.6 Idealized diamagnetisms, flux lines, with its quantization -- 3.7 Flux quantization -- 3.8 Josephson current -- 3.9 Josephson current in a magnetic field. , 3.10 Superconducting quantum interference device (SQUID) -- 3.11 Superconductivity: A macroscopic quantum phenomenon -- 3.12 Critical magnetic field -- Conclusion -- References -- 4 -- Superconductors for Large-Scale Applications -- 1. Introduction -- 2. Meissner effect: Attribute to superconductors -- 3. Advanced power transmission system -- 4. Super conducting electrical power devices -- 5. Advanced power storage system -- 6. Modern transportation -- 7. Advanced accelerators -- 8. Magnetic resonance devices -- 8.1 Magnetic resonance imaging for medical diagnostics -- 8.2 NMR spectroscopy -- 8.3 Fast field cycle relaxometer -- 9. SQUID -- Conclusion -- References -- 5 -- Lanthanide-based Superconductor and its Applications -- 1. Introduction -- 2. Lanthanide-based superconductors -- 2.1 Preparation methods -- 2.1.1 Solid state reaction processes -- 2.1.2 Laser heating -- 2.1.3 High-pressure synthesis -- 2.2 Characterization of lanthanide-based superconductors -- 2.3 Superconducting properties of the LBSC -- 2.4 Applications of LBSC -- Conclusions -- References -- 6 -- Type I Superconductors: Materials and Applications -- 1. Introduction -- 2. Type-I superconductors -- 3. History of superconductivity -- 3.1. Quest for low temperature -- 3.2 Discovery of Helium -- 3.3 Curiosity to know the resistance of metals at absolute zero? -- 3.4 Why mercury used to measure low-temperature resistance? -- 4. Attributes of superconductors -- 4.1 Current in a superconductor coil -- 4.2 How superconductors behave in an external magnetic field? -- 4.3 Unification of electric and magnetic behaviour -- 5. Characteristics of type-I superconductors -- 5.1 Critical Temperature (TC) -- 5.2 Meissner effect or perfect diamagnetism -- 5.3 Critical magnetic field (HC) -- 5.4 Critical current (IC) -- 5.5 Isotope effect -- 5.6 Development of theories of superconductivity. , 5.6.1 London equations and penetration depth -- 5.6.2 Ginzburg and Landau theory -- 5.6.3 BCS theory -- 5.7 Breakthroughs and outcomes of theoretical research -- 6. Applications -- 7. Issues with type-I superconductors -- References -- 7 -- Bulk Superconductors: Materials and Applications -- 1. Introduction -- 2. New era of high temperature superconductor -- 3. Type-II superconductors -- 4. Characteristics of type-II superconductors -- 4.1 Critical temperature (TC) -- 4.2 Critical magnetic field (HC) -- 4.3 Meissner effect or perfect diamagnetism -- 5. Different types of bulk superconductors -- 5.1 Alloys -- 5.2 Niobium alloys -- 5.3 Oxides, cuprates and ceramics -- 5.4 Fullerenes -- 6. Applications -- 6.1 Superconductor magnets and ordinary electromagnets -- 6.2 High field magnets -- 6.3 Magnetic levitation -- 6.4 Medical applications -- 6.5 Detectors -- 6.6 Josephson junctions -- Conclusion and future outlook -- Reference -- 8 -- Soft Superconductors: Materials and Applications -- 1. Introduction -- 2. Type 1 Superconductors -- 3. Structural properties of superconductors -- 4. A3B structure superconductors -- 5. MMo6X8& -- M2A3X3 structures superconductors -- 6. Cuprate superconductors structures -- 7. Production of superconductors -- 8. Wire production -- 9. Thin films production -- 10. Superconductor applications -- Conclusion -- References -- 9 -- Oxide Superconductors -- 1. Background -- 2. Unusual properties super conducting materials and proposed theories and hypothesis -- 3. Cooper pair model -- 4. Crystal structure analysis of superconducting materials -- 5. Applications of oxide superconductor -- Conclusions -- References -- 10 -- High Temperature Superconductors: Materials and Applications -- 1. Introduction -- 2. Science of HTSC -- 3. Nickel based HTSC -- 4. HTSC for fusion reactors. , 5. HTSC magnetic energy storage for power applications -- 6. HTSC materials based on bismuth -- 7. HTSC in co-axial magnetic gear -- Conclusions -- References -- 11 -- Superconducting Metamaterials and their Applications -- 1. Superconducting materials -- 2. Metamaterials -- 2.1 Low loss metamaterials -- 2.2 Scaling of SRR properties -- 2.3 Scaling of wire array properties -- 3. Novel superconducting metamaterial implementations -- 3.1 Ferromagnet- superconductor composites -- 3.2 DC magnetic superconducting metamaterials -- 3.3 SQUID metamaterials -- 4. Superconducting photonic crystal -- 5. Thin film superconducting metamaterial -- 6. Advantages of metamaterials -- 6.1 Compact superconducting materials -- 6.2 Tuneability and nonlinearity -- 6.3 Implementations of superconducting metamaterials -- 7. Novel applications -- Conclusion -- References -- 12 -- Superconductors for Medical Applications -- 1. Introduction -- 2. Medical applications -- 2.1 Magnetic resonance imaging (MRI) -- 2.1.1 Quench protection design of MRI superconducting magnet -- 2.1.2 Open MRI superconducting magnet -- 2.1.3 MRI food inspection system -- 2.2 Magnetic gene transfer -- 2.3 Magnetic drug delivery system -- 2.4 Cancer and internal hemorrhage detection -- Conclusions -- References -- back-matter -- Keyword Index -- About the Editors -- Superconductors for Magnetic Imaging Resonance Applications -- 1. Introduction -- 2. History of superconductor materials for MRI -- 2.1 Liquid helium free SN2 high-temperature fuperconductor magnet -- 2.2 Bismuth strontium calcium copper oxide (Bi2223): First SN2-HTS magnet -- 2.3 Magnesium diboride superconductors -- 2.3.1 Challenges and prospects for MgB2 MRI magnets -- 3. Potential superconductors for MRIs -- 3.1 Nb-Ti and Nb3Sn superconductors -- 3.2 Copper based superconductors. , 3.3 Rare - earth barium copper oxide superconductors (REBCO) -- 3.4 MgB2 superconductors -- 3.5 Iron-based superconductors (IBS) -- 4. Materials' and their applications' prospects in the future -- Conclusion -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: This book is intended to present the latest applicational advancements of MXenes in diversified sectors.
    Type of Medium: Online Resource
    Pages: 1 online resource (123 pages)
    Edition: 1st ed.
    ISBN: 9781644902875
    Series Statement: Materials Research Proceedings Series ; v.155
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Applications of MXenes in Supercapacitors -- 1. Introduction -- 2. Brief idea of MAX phase and MXene -- 3. MXene and MXene-based composites as supercapacitor electrode materials -- 4. Parameters that affect the electrochemical behaviors of MXene -- 4.1 Etchant -- 4.2 Etchant concentration -- 4.3 Surface termination group -- 4.4 Partial etching of 'A' group from the MAX phase -- 4.5 Etching time and etching temperature -- 5. Different types of supercapacitors with MXene -- 5.1 MXene-based symmetric supercapacitor -- 5.1.1 One-dimensional (1D) supercapacitor -- 5.1.2 Two-dimensional (2D) supercapacitor -- 5.1.3 Three-dimensional (3D) supercapacitor -- 5.2 MXene-based asymmetric supercapacitor -- 5.3 Current MXene based micro-supercapacitor -- 5.4 MXene-based transparent supercapacitor -- Conclusion -- References -- 2 -- Applications of MXenes in EMI shielding -- 2. Electromagnetic interference shielding mechanism -- 3. MXene for EMI shielding -- 3.1 Recent progress in EMI shielding performance of different MXenes composites -- Conclusion -- Acknowledgments -- References -- 3 -- MXenes for Nanophotonics -- 1. MXenes -An introduction and as a 2D Material -- 2. Types of MXene -- 3. Non-linear optical behavior of MXene -- 3.1 , - ., - ., - . MXene -- 3.2 , - ., - . MXene -- 3.2.1 Synthesis of , - ., - . MXene -- 3.2.2 Characterization Results -- 4. Optical and Electronic Trends -- 4.1 Optical Properties -- 4.2 Electronic properties -- 5. Theoretical outcomes -- 6. Experimental outcomes -- 7. Device implementation -- 7.1 Saturable absorber -- 7.2 Photodetectors based on MXene -- 7.3 Light emitting diodes -- 7.4 Photovoltaic devices -- 8. Future perspectives and challenges -- Conclusion -- References -- 4 -- Application of MXenes in Photodetectors -- 1. Introduction. , 2. Preparation techniques of MXenes -- 2.1 Etching (HF etching) method -- 2.2 Non-HF etching methods -- 2.3 Hydrothermal method -- 3. Properties of MXenes -- 3.1 Mechanical properties -- 3.2 Structural properties -- 3.3 Electronic properties -- 3.4 Optical properties -- 4. Application of MXenes in the field of photodetectors -- Conclusion -- Acknowledgments -- References -- 5 -- Applications of MXenes in Electrocatalysis -- 1. Introduction -- 1.1 Features of MXene as an Electrocatalyst -- 1.2 Mechanical properties of MXENE -- 1.3 Electrical structures of MXenes -- 2. Synthesis of MXenes -- 3. Applications of MXene as electrocatalyst -- 3.1 MXene for hydrogen evolution reaction -- 3.2 MXene for nitrogen reduction reaction -- 3.2 MXene for carbon dioxide reduction reaction -- 3.4 MXene for environmental remediation -- 3.5 MXene-based electrocatalysts for ORR -- 3.6 MXene for batteries storage and supercapacitors -- Conclusion -- Acknowledgments -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book is concerned with the use of Artificial Intelligence in the discovery, production and application of new engineering materials.
    Type of Medium: Online Resource
    Pages: 1 online resource (147 pages)
    Edition: 1st ed.
    ISBN: 9781644902530
    Series Statement: Materials Research Foundations Series ; v.147
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Artificial Intelligence Nano-Robots -- 1. Introduction -- 2. Composites -- 2.1 Liquid crystal elastomers -- 2.2 Shape memory polymers -- 2.3 Hydrogels -- 2.4 CNT actuators -- 2.5 Conducting polymers -- 3. Components and materials -- 4. Movement in nanorobots -- 5. Mechanism and stimulation -- 6. Trust dimensions -- 6.1 Reliability and safety -- 6.2 Explainability and interpretability -- 6.3 Privacy and security -- 6.4 Performance and robustness -- 7. Actuators -- 7.1 Thermally responsive actuators -- 7.2 Photo-responsive actuators -- 7.3 Magnetically responsive actuators -- 7.4 Electrically responsive actuators -- 8. Applications -- 8.1 Cancer detection and its treatment -- 8.2 Nanorobots in the diagnosis and treatment of diabetes -- 8.3 Artificial oxygen carrier nanorobot -- 9. Future challenges -- Conclusion and future scope -- Conflict of interest -- Acknowledgment -- References -- 2 -- Data Mining in Material Science -- 1. Introduction -- 2. Machine learning and materials science -- 3. ML algorithms in materials science -- 4. Steps in machine learning for materials science -- 4.1 Experience -- 4.2 Task -- 4.3 Classification -- 4.4 Regression -- 4.5 Clustering -- 4.6 Dimension reduction and conception -- 4.7 Efficient searching -- 4.8 Performance measure -- 4.9 Model particulars -- 4.10 Supervised model -- Conclusion -- References -- 3 -- Artificial Intelligence Applications in Solar Photovoltaic Renewable Energy Systems -- 1. Introduction -- 1.1 Overview of Solar PV Renewable Energy System and Artificial Intelligence (AI) Technology -- 1.2 Solar energy generation -- 1.3 Classification of solar energy technologies (SET) -- 1.3.1 Concentrated solar-thermal power (CSP) -- 1.3.2 Solar photovoltaic energy -- 2. Artificial intelligence (AI) -- 2.1 Machine learning -- 2.2 Deep learning. , 2.2.1 Convolutional neural networks (CNNs) -- 2.2.2 Long short-term memory (LSTM) -- 2.2.3 Generative adversarial network (GAN) -- 3. Application of AI in solar PV system -- 3.1 Monitoring of PV systems -- 3.2 PV fault detection and diagnosis (FDD) methods -- 3.3 Employment of AI technologies for sizing PV systems -- 3.4 Modelling of a solar PV generator -- 3.5 Solar water heating systems (SWHs) -- 4. Challenges of effective AI application in solar PV system -- 4.1 Solar energy optimization -- 4.2 PV-dependent hybrid facility optimization -- 4.3 External factors of solar energy generation -- 4.4 Challenges in the development of solar energy systems -- 4.5 Solar energy transformation -- 5. Prospects and future work consideration -- Conclusion -- References -- 4 -- Artificial Intelligence in Material Genomics -- 1. Introduction -- 2. Material genomics -- 3. Strength of artificial intelligence -- 4. Artificial intelligence in material genomics -- Conclusion -- References -- 5 -- Applications of Artificial Intelligence in Polymer Manufacturing -- 1. Introduction -- 1.1 Advantages and disadvantages of artificial intelligence in polymer manufacturing -- 2. Classification of artificial intelligence -- 2.1 Classification of AI based on capabilities -- 3. Key Developments and commercialization in the polymer industry -- 4. Application of artificial intelligence in polymer manufacturing -- 4.1 Artificial intelligence and polymer manufacturing -- 4.2 Biodegradable polymers and artificial intelligence -- 4.3 Artificial intelligence and packaging industries -- 4.4 Agriculture and artificial intelligence -- 4.5 Healthcare and artificial intelligence -- 4.6 Artificial intelligence and dentistry -- 4.7 Food industry and artificial intelligence -- 4.8 Cosmetic artificial intelligence -- 5. Future prospects and conventional challenges. , 6. Guidelines, rules, and regulations for polymeric manufacturing -- Conclusion -- Acknowledgment -- Conflict of Interest -- Reference -- 6 -- Artificial Intelligence for Energy Conversion -- 1. Introduction -- 2. Alternative sources of energy and artificial intelligence -- 3. Machine learning and its application in material sciences -- 4. Limitation of principled method and how ML can intervene -- 5. Applications of AI in the domain of energy conversions -- 5.1 AI in photonics -- 5.2 AI in electrochemical catalyst -- 5.3 AI in electrolysis -- 5.4 AI in fuel cell technology -- Conclusions -- Acknowledgments -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book presents recent developments in the field of thermoelectric polymers and polymer composites.
    Type of Medium: Online Resource
    Pages: 1 online resource (153 pages)
    Edition: 1st ed.
    ISBN: 9781644903018
    Series Statement: Materials Research Foundations Series ; v.162
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Thermoelectric Effects -- 1. Introduction -- 2. Thermoelectric effects -- 2.1 Performance parameters of thermoelectric material -- 2.2 Thermoelectric materials -- 2.3 Hybrid thermoelectric materials -- 2.4 Thermoelectric plastics -- Conclusion -- Reference -- 2 -- Fabrication of Polymer and Organic-Inorganic Composites -- 1. Introduction -- 2. Polymers -- 2.1 Organic polymers -- 2.2 Inorganic polymers -- 2.2.1 Thermoplastic -- 2.2.2 Thermoset -- 3. Composite -- 3.1 Filled composites -- 3.2 Reinforced composites -- 4. Organic-Inorganic composites -- 4.1 Synthesis of inorganic-organic composites -- 4.1.1 Electrospinning technique -- 4.1.2 Solution processing -- 4.1.2.1 Hydrothermal synthesis -- 4.1.2.2 Spray coating -- 4.2.3 Inkjet printing -- 4.1.4 Hot pressing -- 4.1.5 Atomic layer deposition technique (ALD) -- 4.1.6 Three-Dimensional (3D) printing -- 4.2 Characterization of organic-inorganic composites -- 4.2.1 Mechanical -- 4.2.2 Thermal -- 4.2.3 Microscopy -- Conclusion -- References -- 3 -- Thermoelectric Properties of Polymer and Organic-Inorganic Composites -- 1. Introduction -- 2. Thermoelectric polymers -- 2.1 Thermoelectric organic-inorganic composites -- 2.2 Thermoelectric properties -- 2.3 Thermoelectric effects -- 2.3.1 Seebeck effect -- 2.3.2 Peltier effect -- 2.3.3 Thomson effect -- 2.4 Joule heating and thermal conduction -- 2.5 Measurement techniques -- 2.5.1 Electrical conductivity measurement -- 2.5.2 Thermal conductivity measurement -- References -- 4 -- Materials used in Thermoelectric Polymers -- 1. Introduction -- 2. Conducting polymers -- 2.1 Preparation and processing of thermoelectric polymers -- 3. P-type thermoelectric polymers -- 3.1 Polyacetylene -- 3.2 Polyaniline -- 3.3 Polypyrrole -- 3.4 (3,4-ethylenedioxythiophene) -- 3.5 Polythiophenes. , 3.6 Poly(2,7-carbazole) and derivative -- 4. n-type thermoelectric polymers -- 4.1 Factors affecting thermoelectric properties -- 4.1.1 Polymer structure -- 4.1.2 Concentration of polymer -- 4.1.3 Temperature -- 4.1.4 Polymer chain alignment -- References -- 5 -- Cage Structured Compounds -- 1. Introduction -- 2. Classification based on the mode of synthesis -- 3. Biomedical Applications -- 4. Classification based on their mechanism of complexation -- 4.1 Cryptophane cages -- 4.2 Calixarene cages -- 4.3 Upper rostrum alteration -- 4.4 Lower rostrum alteration -- 5-. Polymers designed by covalent bonding of monomers having calixarene moiety -- 6. Calixarene functionalized polymers used for iodine capture -- 7. Sensing and elimination of pollutants. -- Conclusion & -- future challenges -- References -- 6 -- Thermoelectric Conversion Efficiency and Figure of Merit -- 1. Introduction -- 2. Seebeck coefficient and Thermoelectric figure of merit -- 2.1 Seebeck coefficient -- 2.2 Figure of merit -- 2.3 The dimensionless thermoelectric figure of merit (ZT) -- 3. Thermoelectric conversion efficiency -- 4. Challenges and their possible solutions -- 4.1 Engineering Dimensionless Figure of Merit (zT)eng -- 4.2 Designing power factor and output power density -- Conclusion -- References -- 7 -- Other New Thermoelectric Compounds -- 1. Introduction -- 1.1 Organic conjugated polymers as promising TE materials -- 1.2 Power factor (PF) optimization -- 1.3 Design of new potential organic thermoelectric polymers -- 2. p-type TE polymeric compounds -- 2.1 Poly (styrenesulfonate): PEDOT as a promising TE material -- 2.1.1 Nano structuring approach in PEDOT family -- 2.1.2 PEDOT/CNT composites -- 2.1 Semi-crystalline TE polymeric materials -- 2.1.1 Polythiophene (PTP) derivatives -- 2.1.1.1 Electro-chemical polymerization and TE properties of PTP. , 2.2.1.2 PTP derivative: P3HTP (Poly (3-hexyl-thiophene-2,5-diyl) -- 2.2.1.3 PTP/CNT composites -- 3. TE n-type polymeric compounds -- 3.1 Thermoelectric (n-Type) Organic polymeric materials -- 3.2 Transition metals and Organic Hybrid (n-Type) Polymeric materials -- 4. Recent trends of TE polymeric compounds -- 4.1 Self-powered/multi-parameter sensor technology -- 4.2 Conducting polymeric materials application in TE modules -- 4.3 Other incipient uses -- Conclusion and Future Outlook -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book presents an in-depth review of biomass-derived materials for energy storage technologies. Biomass is the most renewable and abundant carbon resource and has great potential for sustainable energy production.
    Type of Medium: Online Resource
    Pages: 1 online resource (151 pages)
    Edition: 1st ed.
    ISBN: 9781644900871
    Series Statement: Materials Research Foundations Series ; v.78
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Bone Char as a Support Material to Build a Microbial Biocapacitor -- 1. Introduction -- 2. Influence of the chemical and textural properties on biochar -- 3. Bioanode preparation -- 4. Accumulated charge -- 5. Biochar-based anode and bioanode capacitances -- Conclusions -- Acknowledgements -- List of abbreviations -- References -- 2 -- Nature Inspired Materials for Energy Storage -- 1. Introduction -- 2. Properties of nature-derived carbons properties for fulfilling the operational need for EDLC- supercapacitors -- 3. Various preparation mechanisms for nature derived carbons for supercapacitor -- 4. Advantages of naturally-derived carbons over graphene and CNT for EDLC supercapacitors -- 5. Use of different biological precursors -- 5.1 Plant-derived precursors -- 5.2 Fruit based precursors -- 5.3 Microbial-based precursors -- 5.4 Animal-based precursors -- 6. Structural characteristics and properties of nature derived carbons -- Conclusions and future directions -- References -- 3 -- Biomass Derived Composites for Energy Storage -- 1. Introduction -- 2. Sustainable biomass-carbon materials -- 3. Calculation paramaters -- 4. Biomass activation -- 4.1 Physical activation -- 4.2 Chemical activation -- 4.3 Hydrothermal carbonization -- 4.4 Other activations -- 5. Outlook -- Conclusions and prospects -- References -- 4 -- Lignin-Derived Materials for Energy Storage -- 1. Introduction -- 2. Lignin isolation process -- 3. Lignin carbon fibres -- 3.1 Activation techniques -- 3.2 Lignin- Lignin blends -- 3.3 Lignin-Cellulose blends -- 3.4 Fractionation -- 3.5 Reinforcement -- 3.6 Chemical modification -- 3.7 New lignin types -- 4. Lignin-derived porous carbon -- 5. Challenges with graphite-based electrodes -- 6. Lignin for electrochemical applications -- 6.1 Lithium-ion batteries. , 6.2 Electrochemical double layer capacitors -- 6.3 Electrochemical pseudocapacitors -- 6.4 Sodium -ion batteries -- 6.5 Lignin as binder -- Conclusion and Perspectives -- Acknowledgements -- This research work was financially supported by the University Malaya Impact-Oriented Interdisciplinary Research Grant (No.IIRG018A-2019) and Global Collaborative Programme - SATU Joint Research Scheme (No. ST012-2019). -- References -- 5 -- Bamboo Derived Materials for Energy Storage -- 1. Introduction -- 2. Fabrication of electrode material for supercapacitor application -- 3. Physical characterization -- 4. Electrochemical measurements -- Conclusion -- References -- 6 -- Cellulose-Derived Electrodes for Energy Storage -- 1. Introduction -- 2. Cellulose based flexible composite electrodes -- 3. Cellulose carbonization and activation -- 4. Cellulose-derived carbon for supercapacitors -- 5. Cellulose-derived carbon for high-frequency supercapacitors -- 6. Cellulose-derived carbon for lithium-ion batteries -- 7. Cellulose-derived carbon for lithium-sulfur batteries -- 8. Cellulose-derived carbon for other batteries -- Conclusion -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book reviews the fundamental concepts and recent advances in the areas of anodes, cathodes, electrolytes, separators, binders, fabrication of device assemblies and electrochemical performance.
    Type of Medium: Online Resource
    Pages: 1 online resource (211 pages)
    Edition: 1st ed.
    ISBN: 9781644900918
    Series Statement: Materials Research Foundations Series ; v.80
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Fabrication of TiO2 Materials for Lithium-ion Batteries -- 1. Introduction -- 2. Synthesis of TiO2 /graphene nanocomposites and metal oxides core-shells SnO2@TiO2 nanotube hybrids -- 2.1 Preparation of TiO2 NRDS -- 2.2 Synthesis of TiO2 NFBS -- 2.3 Synthesis of TiO2 nanocomposites with graphene -- 2.4 Synthesis of coaxial SnO2@TiO2 nanotube hybrids -- 3. Fabrication of cell for electrochemical characterization -- 3.1 Electrochemical measurements for TiO2/graphene nanocomposite -- 3.2 Electrochemical tests for coaxial SnO2@TiO2 nanotube hybrids -- 4. Characterization of TiO2/graphene nanocomposites -- 4.1 TiO2 /graphene nanocomposites -- 4.1.1 SEM -- 4.1.2 TEM -- 4.1.3 XRD -- 4.1.4 Raman -- 4.1.5 BET -- 4.1.6 EDX -- 4.2 Electrochemical Testing -- 5. Characterization of coaxial SnO2@TiO2 nanotube hybrids -- 5.1 Coaxial SnO2@TiO2 nanotube hybrids -- 5.1.1 SEM & -- TEM -- 5.1.2 XRD -- 5.1.4 Electrochemical testing -- Conclusion -- Acknowledgement -- References -- 2 -- A Brief History of Conducting Polymers Applied in Lithium-ion Batteries -- 1. Introduction -- 2. Applications on cathode materials -- 2.1 Before 2000: Emergence stage -- 2.2 2000-2006: Preliminary stage -- 2.3 Since 2007: Fast development stage -- 3. Applications on anode materials -- 3.1 Before 2010: Emergence stage -- 3.2 Since 2010: Rising stage -- Conclusions & -- Outlooks -- Acknowledgment -- References -- 3 -- 2D Transition Metal Dichalcogenides for Lithium-ion Batteries -- 1. Introduction -- 2. MoS2-based anode materials for LIBs -- 3. WS2-based anode materials for LIBs -- 4. MoSe2 based anode materials for LIBs -- 5. WSe2-based anode materials for LIBs -- 6. Other TMDs for LIBs -- 7. Summary and future outlooks -- Acknowledgement -- References -- 4 -- Metal Sulphides for Lithium-ion Batteries. , 1. Introduction -- 2. Demands on batteries in 21st Century -- 3. Design of a lithium-ion battery (LIB) -- 4. Materials related issues in LIBs in modern era -- 5. Advantages of metal-sulphides for LIBs -- 6. Metal sulphide based nanocomposites for battery applications -- 7. Different types of metal sulphides as anode materials in the LIBs applications -- 7.1 Layered metal-sulphides for LIBs. -- 7.2 Copper sulphides -- 7.3 Cobalt sulphides -- 7.4 Molybdenum disulphide (MoS2) -- 7.5 Tungsten disulphide (WS2) -- 7.6 Iron disulphide (FeS2) -- 7.7 Tin sulphides -- 7.8 Nickel Sulphides -- 8. Synthesis techniques for metal sulphides -- 8.1 Solid state method -- 8.2 The hydro/solvothermal method -- 8.3 Microwave-assisted hydrothermal synthesis -- 8.4 Spraying-related methods -- 9. Summary -- References -- 5 -- Magnetic Nanomaterials for Lithium-ion Batteries -- 1. Introduction -- 2. History of LIBs -- 3. LIB Technology -- 4. LIB working principle -- 5. Nanomaterials -- 6. Nanomaterials in anode for LIBs -- 7. Nanomaterials in cathode for LIBs -- Conclusions -- References -- 6 -- Recent Advances in Nanomaterials for Li-ion Batteries -- 1. Introduction -- 2. Structure and working of Li-ion battery -- 3. Electrochemical behavior of various materials for Li-ion batteries -- Conclusions -- References -- 7 -- Silicon Materials for Lithium-ion Battery Applications -- 1. Introduction -- 1.1 Overview on lithium battery technology -- 1.2 Silicon as anode for lithium batteries: -- 1.2.1 0D nanostructures -- 1.2.2 1D nanostructures -- 1.2.3 2D nanostructures -- 1.2.4 3D-nanostructures -- 2. Electrochemical performance of silicon based nanostructures -- Conclusion -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book covers the fundamental principles and applications of sodium-ion batteries and reports experimental work on the use of electrolytes and different electrode materials, such as silicon, carbon, conducting polymers, and Mn- and Sn-based materials. Also discussed are state-of-the-art, future prospects and challenges in sodium-ion battery technology.
    Type of Medium: Online Resource
    Pages: 1 online resource (280 pages)
    Edition: 1st ed.
    ISBN: 9781644900833
    Series Statement: Materials Research Foundations Series ; v.76
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- NASICON Electrodes for Sodium-Ion Batteries -- 1. Introduction -- 2. Machinery of SIBs -- 2.1 Storing the progression of NASICON materials -- 2.2 Cathode materials based on NASICON type -- 2.2.1 NASICON-type nanoparticles of Fe2(MoO4)3 wrapped with graphene -- 2.2.2 NASICON-type materials based on Na3V2(PO4)3 -- 2.2.3 NASICON-type materials based on Na3V2(PO4)2F3 and Na3V2(PO4)3 -- 2.2.4 NASICON-type materials of porous Na3V2(PO4)3 and NaTi2(PO4)3 -- 2.2.5 A negative electrode of Mg0.5Ti2(PO4)3 based NASICON materials -- 2.2.6 Numerous other NASICON cathode materials -- 2.3 Anode materials based on NASICON-type -- 2.3.1 NaTi2(PO4)3 (NTP) type anode materials -- 2.3.2 NaZr2(PO4)3 (NZP) type anode materials -- 2.3.3 Numerous other NASICON anode materials -- 2.4 Commercial prospects of NIB technologies -- Conclusions -- Acknowledgment -- References -- 2 -- Carbon Anodes for Sodium-Ion Batteries -- 1. Introduction -- 2. Overview of SIBs electrode materials -- 3. Carbon anode materials for advanced SIBs -- 3.1 Graphite as anode for SIBs -- 3.2 Hard carbon as anode for SIBs -- 3.3 Graphene as anode for SIBs -- 3.4 Carbon nanofibers as anode for SIBs -- 3.5 Biomass-derived carbon as anode for SIBs -- 3.6 Heteroatom-doped carbon materials as anode for SIBs -- References -- 3 -- Organic Electrode Material for Sodium-Ion Batteries -- 1. Introduction -- 2. Molecular design of electrodes for organic sodium ion batteries -- 2.1 Organic electrodes constituting of C=O based reaction -- 2.1.1 Carbonyl compounds -- 2.1.2 Polyimides -- 2.1.3 Quinones -- 2.1.4 Carboxylates -- 2.1.5 Anhydrides -- 2.2 Organic electrodes based on doping reaction -- 2.2.1 Organic radical polymers -- 2.2.2 Conductive polymers -- 2.2.3 Conjugated microporous polymers -- 2.2.4 Organometallic polymers. , 2.3 Organic electrode constituting of C=N based reaction -- 2.3.1 Schiff bases -- 2.3.2 Pteridine derivatives -- 3. Electrode design for sodium-ion batteries -- 3.1 Molecular engineering -- 3.2 Polymerization -- 3.3 Combining with carbon (carbon hybrid) -- 3.4 Electrolyte modification -- 4 Future challenges -- References -- 4 -- Alloys for Sodium-Ion Batteries -- 1. Introduction -- 2. Sodium ion batteries anode materials -- 3. Hard carbon -- 4. Carbon nanostructures -- 5. Carbon and alloy-based material composites -- 6. Alloying reactions-based anode materials -- 6.1 P-based materials -- 6.1.1 Red phosphorous -- 6.1.2 Black phosphorous -- 7. Conversion based material -- 7.1 Metal oxides -- 7.2 Metal sulfides -- 8. Graphene -- Conclusion and challenges -- Acknowledgments -- References -- 5 -- Mn-Based Materials for Sodium-Ion Batteries -- 1. Introduction -- 2. History -- 3. Types -- 4. Sodium-ion batteries -- 5. Mn-based sodium-ion batteries -- References -- 6 -- Tin-Based Materials for Sodium-Ion Batteries -- 1. Introduction -- 2. Types of Sn-based anodes -- 3. Electrochemical performance -- 4. Structure and design -- 5. Performance -- 6. Thermal stability -- 7. Mechanism -- 8. Drawbacks -- 9. Factors affecting the capacity of Sn based sodium ion batteries -- Conclusion -- References -- 7 -- Conducting Polymer Electrodes for Sodium-Ion Batteries -- 1. Introduction -- 2. Types of Energy depository technologies in static application -- 2.1 Pump hydroelectric depository (PHD) -- 2.2 Compressed air energy depository (CAED) -- 2.3 Electrochemical energy storage (EED) -- 3. Lithium-ion batteries (LIBs) -- 4. Beginning of new technology in the field of energy storage -- 4.1 Electrode material for SIBs -- 5. Polymer electrode material for the SIBs -- 5.1 Polyimides -- 6. Conducting polymers. , 6.1 Conducting polymer can provide electromagnetic shielding of electronic devices -- 6.2 It absorbs microwaves by using stealth technology -- 6.3 It can be used as a hole injecting electrode for OLEDs -- 6.4 Some conducting polymers are promising for field effect transistor (FET) -- 6.5 It can be used in display technology due to their electroluminescent property -- 7. Types of conductive polymer -- 7.1 Electrically conducting polymer -- 7.2 Doping in conductive polymer -- 7.3 Polyacetylene and polyphenylene as electrode material for the SIBs -- 7.4 Conjugated conductive polymer and charge storage mechanism -- 7.5 Non-conjugated conductive radical polymer -- 7.6 Inorganic nanoparticles-conducting polymer composite based battery electrodes -- 8. Why conducting polymer? -- 9. Functions of CPs -- 9.1 Merits and demerits of the conducting polymer -- Conclusion -- Acknowledgement -- References -- 8 -- Recent Progress in Electrode Materials for Sodium Ion Batteries -- 1. Introduction -- 2. History and working principal of SIB -- 3. Anode Materials for SIB -- 3.1 Metal Oxide Anode Materials -- 3.2 Alloy Anode Materials -- 4. Cathode Materials for SIBs -- 4.1 Layered Oxide Cathode Materials -- 4.2 Polyanionic Cathode Materials -- Conclusion -- References -- 9 -- Electrolytes for Na-O2 Batteries: Towards a Rational Design -- 1. Introduction -- 2. Na-O2 Batteries -- 3. Instability of electrolyte -- 4. The use of additives -- 5. Outlook -- Acknowledgements -- References -- 10 -- State-of-the-Art, Future Prospects and Challenges in Sodium-Ion Battery Technology -- 1. Introduction -- 2. Background -- 3. State-of-the-art or current status of SIBs -- 4. Hurdles in SIBs -- 5. Next-generation battery research -- 5.1 SexSy-based negative electrode materials (NEMs) -- 5.2 Na3M2(PO4)2F3 [M¼Ti, Fe, V] based NEMs. , 5.3 Inclusion of fluorinated ethylene carbonate (FEC) in the electrolyte -- 5.4 Efficient cycling process by Sb in SIBs -- 5.5 SnSb as NEMs -- 6. Economic perspective of SIBs -- 6.1 Battery Performance and Cost model (BatPaC model) -- 6.2 Cost of cathode -- 6.3 Cost of anode -- 6.4 Cost of electrolyte -- 6.5 Fluctuations or variation in price -- 6.6 Limitation of BatPaC model -- 7. A materialistic outlook of SIBs -- 8. Challenges of SIBs -- 8.1 Limitations and materialistic barriers -- 8.2 Challenges of NEMs -- 9. Future opportunities -- Acknowledgment -- References -- 11 -- Conducting Polymers for Sodium-Ion Batteries -- 1. Introduction -- 2. Applications on cathode materials -- 2.1 Doped and pure conducting polymer cathodes -- 2.2 Conducting polymer-based composite cathode -- 3. Applications on anode materials -- 3.1 Doped and pure conducting polymer anodes -- 3.2 Conducting polymer-based composite anode -- Conclusions & -- Outlooks -- Acknowledgment -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Quantum dots. ; Electronic books.
    Description / Table of Contents: The book provides a thorough survey of current research in quantum dots synthesis, properties, and applications.
    Type of Medium: Online Resource
    Pages: 1 online resource (360 pages)
    Edition: 1st ed.
    ISBN: 9781644901250
    Series Statement: Materials Research Foundations Series ; v.96
    DDC: 621.38152
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...