GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 4 (2015): 54–63, doi:10.5670/oceanog.2015.81.
    Description: Current structure, transport, and water mass properties of the northward-flowing Kuroshio and the southward-flowing Luzon Undercurrent (LU) were observed for nearly one year, June 8, 2012–June 4, 2013, across the Kuroshio path at 18.75°N. Observations were made from four platforms: an array of six subsurface ADCP moorings, two Seagliders, fivepressure inverted echo sounders (PIES), and five horizontal electric field (HEF) sensors, providing the most detailed time series of the Kuroshio and Luzon Undercurrent water properties to date. Ocean state estimates of the western boundary current system were performed using the MIT general circulation model—four-dimensional variational assimilation (MITgcm-4D-Var) system. Prominent Kuroshio features from observations are simulated well by the numerical model. Annual mean Kuroshio transport, averaged over all platforms, is ~16 Sv with a standard deviation ~4 Sv. Kuroshio and LU transports and water mass pathways east of Luzon are revealed by Seaglider measurements. In a layer above the salinity maximum associated with North Pacific Tropical Water (NPTW), Kuroshio transport is ~7 Sv and contains North Equatorial Current (NEC) and Western Philippine Sea (WPS) waters, with an insignificant amount of South China Sea water on the shallow western flank. In an intermediate layer containing the core of the NPTW, Kuroshio transport is ~10 Sv, consisting mostly of NEC water. In the lower layer of the Kuroshio, transport is ~1.5 Sv of mostly North Pacific Intermediate Water (NPIW) as a part of WPS waters. Annual mean Luzon Undercurrent southward transport integrated to 1,000 m depth is ~2.7 Sv with a standard deviation ~2 Sv, carrying solely WPS waters below the salinity minimum of the NPIW. The transport of the western boundary current integrated over the full ocean depth east of Luzon Island is ~14 ± 4.5 Sv. Sources of the water masses in the Kuroshio and Luzon Undercurrent are confirmed qualitatively by the numerical model.
    Description: This work was supported by the US Office of Naval Research (N00014-10-1-0273 and N00014-15-1-2285 to BDC, N00014-10-1-0273 to GG, N00014-14-1-0065 to ALG, N00014-10-1-0468 to TBS, N0001-10-1-0273 to LRC, N00014-10-1-0308 to CML, N00014-10-1-0397 and N00014-10-1-0273 to BM, N00014-10-1-0397 to RCL, and N00014-10-1-0268 to SRJ) and the Taiwan Ministry of Science and Technology. Yang, Chang, and Mensah are supported by the Taiwan Ministry of Science and Technology.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 1 (2015): 150-159, doi:10.5670/oceanog.2015.15.
    Description: One of the notable features of the global ocean is that the salinity of the North Atlantic is about 1 psu higher than that of the North Pacific. This contrast is thought to be due to one of the large asymmetries in the global water cycle: the transport of water vapor by the trade winds across Central America and the lack of any comparable transport into the Atlantic from the Sahara Desert. Net evaporation serves to maintain high Atlantic salinities, and net precipitation lowers those in the Pacific. Because the effects on upper-ocean physics are markedly different in the evaporating and precipitating regimes, the next phase of research in the Salinity Processes in the Upper-ocean Regional Study (SPURS) must address a high rainfall region. It seemed especially appropriate to focus on the eastern tropical Pacific that is freshened by the water vapor carried from the Atlantic. In a sense, the SPURS-2 Pacific region will be looking at the downstream fate of the freshwater carried out of the SPURS-1 North Atlantic region. Rainfall tends to lower surface density and thus inhibit vertical mixing, leading to quite different physical structure and dynamics in the upper ocean. Here, we discuss the motivations for the location of SPURS-2 and the scientific questions we hope to address.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © The Oceanography Society, 2016. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 29, no. 2 (2016): 82–91, doi:10.5670/oceanog.2016.41.
    Description: The upper 200 m of the two northern Indian Ocean embayments, the Bay of Bengal (BoB) and the Arabian Sea (AS), differ sharply in their salinity stratification, as the Asian monsoon injects massive amounts of freshwater into the BoB while removing freshwater via evaporation from the AS. The ocean circulation transfers salt from the AS to the BoB and exports freshwater from the BoB to mitigate the salinity difference and reach a quasi-steady state, albeit with strong seasonality. An energetic field of mesoscale features and an intrathermocline eddy was observed within the BoB during the R/V Revelle November and December 2013 Air-Sea Interactions Regional Initiative cruises, marking the early northeast monsoon phase. Mesoscale features, which display a surprisingly large thermohaline range within their confines, obscure the regional surface water and thermohaline stratification patterns, as observed by satellite and Argo profilers. Ocean processes blend the fresh and salty features along and across density surfaces, influencing sea surface temperature and air-sea flux. Comparing the Revelle observations to the Argo data reveals a general westward migration of mesoscale features across the BoB.
    Description: Support for Bay of Bengal research is provided by the Office of Naval Research. ALG award number N00014-14-10065. AM and MF award number N00014-13-10451 and for MF a WHOI summer student fellowship. ES award number N00014-14-10236.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 425 (2003), S. 824-828 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Approximately 10 million m3 s-1 of water flow from the Pacific Ocean into the Indian Ocean through the Indonesian seas. Within the Makassar Strait, the primary pathway of the flow, the Indonesian throughflow is far cooler than estimated earlier, as pointed ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...