GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancers, MDPI AG, Vol. 14, No. 18 ( 2022-09-19), p. 4539-
    Abstract: The ongoing rise in the number of cancer cases raises concerns regarding the efficacy of the various treatment methods that are currently available. Consequently, patients are looking for alternatives to traditional cancer treatments such as surgery, chemotherapy, and radiotherapy as a replacement. Medicinal plants are universally acknowledged as the cornerstone of preventative medicine and therapeutic practices. Annona muricata is a member of the family Annonaceae and is familiar for its medicinal properties. A. muricata has been identified to have promising compounds that could potentially be utilized for the treatment of cancer. The most prevalent phytochemical components identified and isolated from this plant are alkaloids, phenols, and acetogenins. This review focuses on the role of A. muricata extract against various types of cancer, modulation of cellular proliferation and necrosis, and bioactive metabolites responsible for various pharmacological activities along with their ethnomedicinal uses. Additionally, this review highlights the molecular mechanism of the role of A. muricata extract in downregulating anti-apoptotic and several genes involved in the pro-cancer metabolic pathways and decreasing the expression of proteins involved in cell invasion and metastasis while upregulating proapoptotic genes and genes involved in the destruction of cancer cells. Therefore, the active phytochemicals identified in A. muricata have the potential to be employed as a promising anti-cancer agent.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Fishes, MDPI AG, Vol. 8, No. 9 ( 2023-08-23), p. 432-
    Abstract: Microplastic (MP) pollution is a prevalent and global threat to fish. MP contamination was investigated in Harpadon nehereus collected from the principal fishing harbors of India’s northwest coast. A total of 213 specimens were collected from the major fishing harbors of Gujarat state (Jakhau, Okha, and Jaffrabad) and Maharashtra state (Mumbai). In the laboratory, the morphometric parameters of the specimens, such as total length and body weight, were measured. The collected specimens were analyzed for MP isolation using the previously documented protocol. MPs were quantified under a stereomicroscope, and physical parameters were recorded. All the examined specimens were found to be contaminated with MPs, with an abundance of 6.98 ± 6.73 MPs/g. The maximum contamination of MPs was recorded at the study site in Jaffrabad, followed by Jakhau, Mumbai, and Okha. Morphometric analysis of MPs revealed threads to be the most dominant shape. Black and blue MPs with a 1–2 mm size were the predominant recorded types. The chemical composition of extracted MPs revealed polyethylene (PE), polystyrene (PS), and polyurethane (PU) as polymer compositions. Conclusively, the findings highlighted a greater menace to seafood safety due to trophic transfer, which causes a hazardous effect on human health.
    Type of Medium: Online Resource
    ISSN: 2410-3888
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2932929-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Veterinary Sciences, MDPI AG, Vol. 10, No. 1 ( 2022-12-30), p. 25-
    Abstract: Chronic inflammatory enteropathy (CE) is a common cause of persistent gastrointestinal signs and intestinal inflammation in dogs. Since evidence links dysbiosis to mucosal inflammation, probiotics, prebiotics, or their combination (synbiotics) may reduce intestinal inflammation and ameliorate dysbiosis in affected dogs. This study’s aim was to investigate the effects of the synbiotic-IgY supplement on clinical signs, inflammatory indices, and mucosal microbiota in dogs with CE. Dogs with CE were enrolled in a randomized prospective trial. Twenty-four client-owned dogs were fed a hydrolyzed diet and administered supplement or placebo (diet) for 6 weeks. Dogs were evaluated at diagnosis and 2- and 6-week post-treatment. Outcome measures included clinical activity, endoscopic and histologic scores, inflammatory markers (fecal calprotectin, C-reactive protein), and composition of the mucosal microbiota via FISH. Eleven supplement- and nine placebo-treated dogs completed the trial. After 6 weeks of therapy, clinical activity and endoscopic scores decreased in both groups. Compared to placebo-treated dogs, dogs administered supplement showed decreased calprotectin at 2-week post-treatment, decreased CRP at 2- and 6-week post-treatment increased mucosal Clostridia and Bacteroides and decreased Enterobacteriaceae in colonic biopsies at trial completion. Results suggest a beneficial effect of diet and supplements on host responses and mucosal microbiota in dogs with CE.
    Type of Medium: Online Resource
    ISSN: 2306-7381
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2768971-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cells, MDPI AG, Vol. 12, No. 9 ( 2023-04-27), p. 1269-
    Abstract: A key component of efforts to identify the biological and drug-specific aspects contributing to therapeutic failure or unexpected exposure-associated toxicity is the study of drug–intestinal barrier interactions. While methods supporting such assessments are widely described for human therapeutics, relatively little information is available for similar evaluations in support of veterinary pharmaceuticals. There is, therefore, a critical need to develop novel approaches for evaluating drug–gut interactions in veterinary medicine. Three-dimensional (3D) organoids can address these difficulties in a reasonably affordable system that circumvents the need for more invasive in vivo assays in live animals. However, a first step in developing such systems is understanding organoid interactions in a 2D monolayer. Given the importance of orally administered medications for meeting the therapeutic need of companion animals, we demonstrate growth conditions under which canine-colonoid-derived intestinal epithelial cells survive, mature, and differentiate into confluent cell systems with high monolayer integrity. We further examine the applicability of this canine-colonoid-derived 2D model to assess the permeability of three structurally diverse, passively absorbed β-blockers (e.g., propranolol, metoprolol, and atenolol). Both the absorptive and secretive apparent permeability (Papp) of these drugs at two different pH conditions were evaluated in canine-colonoid-derived monolayers and compared with that of Caco-2 cells. This proof-of-concept study provides promising preliminary results with regard to the utility of canine-derived organoid monolayers for species-specific assessments of therapeutic drug passive permeability.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Water, MDPI AG, Vol. 15, No. 11 ( 2023-05-26), p. 2029-
    Abstract: The water of the mangrove ecosystem and surrounding coastal areas are gradually shrinking due to the intense destruction. Therefore, the effects of the physicochemical properties of the habitat water on the in-habitant species must be studied. Scylla sp. is involved in the food chain and bioturbation structure formation in mangrove forests. Five major electronic databases, such as PubMed, Scopus, Web of Science, AGRICOLA, and Google Scholar, were systematically searched to review the cause and effects of influencing abiotic factors, mainly physicochemical properties of habitat water, including water pollution on Scylla sp. Responses of mud crabs at biochemical, molecular, physiological, growth, reproduction, and production level were independently reviewed or in relation to physicochemical properties of habitat water, pathogens, heavy metals, and harmful chemicals present in their habitat water. Review results suggest that these crabs are mostly under threats of overfishing, varied physicochemical properties of habitat water, pathogens, heavy metals, and chemical toxicants in water, etc. At low temperatures, the expression of calreticulin and heat shock protein-70 mRNA expression is elevated. Like melatonin, the hormone serotonin in mud crabs controls ecdysteroids and methyl farnesoate at 24 °C, 26 ppt salinity, and pH 7.2 of habitat water, facilitating their reproduction physiology. Xenobiotics in habitat water induce toxicity and oxidative stress in mud crabs. These crabs are prone to infection by white spot and rust spot diseases during the winter and spring seasons with varied water temperatures of 10–30 °C. However, elevated (65%) weight gain with higher molting at the juvenile stage can be achieved if crabs are cultured in water and kept in the dark. Their larvae grow better at 30 ± 2 °C with salinity 35 ppt and 12 hL/12 hD day length. So, monitoring habitat water quality is important for crab culture.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancers, MDPI AG, Vol. 14, No. 14 ( 2022-07-20), p. 3525-
    Abstract: Lipopolysaccharide (LPS) is associated with chronic intestinal inflammation and promotes intestinal cancer progression in the gut. While the interplay between LPS and intestinal immune cells has been well-characterized, little is known about LPS and the intestinal epithelium interactions. In this study, we explored the differential effects of LPS on proliferation and the transcriptome in 3D enteroids/colonoids obtained from dogs with naturally occurring gastrointestinal (GI) diseases including inflammatory bowel disease (IBD) and intestinal mast cell tumor. The study objective was to analyze the LPS-induced modulation of signaling pathways involving the intestinal epithelia and contributing to colorectal cancer development in the context of an inflammatory (IBD) or a tumor microenvironment. While LPS incubation resulted in a pro-cancer gene expression pattern and stimulated proliferation of IBD enteroids and colonoids, downregulation of several cancer-associated genes such as Gpatch4, SLC7A1, ATP13A2, and TEX45 was also observed in tumor enteroids. Genes participating in porphyrin metabolism (CP), nucleocytoplasmic transport (EEF1A1), arachidonic acid, and glutathione metabolism (GPX1) exhibited a similar pattern of altered expression between IBD enteroids and IBD colonoids following LPS stimulation. In contrast, genes involved in anion transport, transcription and translation, apoptotic processes, and regulation of adaptive immune responses showed the opposite expression patterns between IBD enteroids and colonoids following LPS treatment. In brief, the crosstalk between LPS/TLR4 signal transduction pathway and several metabolic pathways such as primary bile acid biosynthesis and secretion, peroxisome, renin–angiotensin system, glutathione metabolism, and arachidonic acid pathways may be important in driving chronic intestinal inflammation and intestinal carcinogenesis.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...