GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Antioxidants, MDPI AG, Vol. 11, No. 2 ( 2022-02-11), p. 366-
    Abstract: Fine particulate matter (PM2.5) potentiates in utero oxidative stress influencing fetal development while antioxidants have potential protective effects. We examined associations among prenatal PM2.5, maternal antioxidant intake, and childhood wheeze in an urban pregnancy cohort (n = 530). Daily PM2.5 exposure over gestation was estimated using a satellite-based spatiotemporally resolved model. Mothers completed the modified Block98 food frequency questionnaire. Average energy-adjusted percentile intake of β-carotene, vitamins (A, C, E), and trace minerals (zinc, magnesium, selenium) constituted an antioxidant index (AI). Maternal-reported child wheeze was ascertained up to 4.1 ± 2.8 years. Bayesian distributed lag interaction models (BDLIMs) were used to examine time-varying associations between prenatal PM2.5 and repeated wheeze (≥2 episodes) and effect modification by AI, race/ethnicity, and child sex. Covariates included maternal age, education, asthma, and temperature. Women were 39% Black and 33% Hispanic, 36% with ≤high school education; 21% of children had repeated wheeze. Higher AI was associated with decreased wheeze in Blacks (OR = 0.37 (0.19–0.73), per IQR increase). BDLIMs identified a sensitive window for PM2.5 effects on wheeze among boys born to Black mothers with low AI (at 33–40 weeks gestation; OR = 1.74 (1.19–2.54), per µg/m3 increase in PM2.5). Relationships among prenatal PM2.5, antioxidant intake, and child wheeze were modified by race/ethnicity and sex.
    Type of Medium: Online Resource
    ISSN: 2076-3921
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704216-9
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  International Journal of Environmental Research and Public Health Vol. 18, No. 10 ( 2021-05-11), p. 5062-
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 18, No. 10 ( 2021-05-11), p. 5062-
    Abstract: Prenatal maternal exposure to air pollution may cause adverse health effects in offspring, potentially through altered immune responses. Maternal psychosocial distress can also alter immune function and may increase gestational vulnerability to air pollution exposure. We investigated whether prenatal exposure to air pollution is associated with altered immune responses in cord blood mononuclear cells (CBMCs) and potential modification by maternal depression in 463 women recruited in early pregnancy (1999–2001) into the Project Viva longitudinal cohort. We estimated black carbon (BC), fine particulate matter (PM2.5), residential proximity to major roadways, and near-residence traffic density, averaged over pregnancy. Women reported depressive symptoms in mid-pregnancy (Edinburgh Postnatal Depression Scale) and depression history by questionnaire. Immune responses were assayed by concentrations of three cytokines (IL-6, IL-10, and TNF-α), in unstimulated or stimulated (phytohemagglutinin (PHA), cockroach extract (Bla g 2), house dust mite extract (Der f 1)) CBMCs. Using multivariable linear or Tobit regression analyses, we found that CBMCs production of IL-6, TNF-a, and IL-10 were all lower in mothers exposed to higher levels of PM2.5 during pregnancy. A suggestive but not statistically significant pattern of lower cord blood cytokine concentrations from ever (versus never) depressed women exposed to PM2.5, BC, or traffic was also observed and warrants further study.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  International Journal of Environmental Research and Public Health Vol. 16, No. 6 ( 2019-03-19), p. 991-
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 16, No. 6 ( 2019-03-19), p. 991-
    Abstract: Research on the health impacts of green environments has mainly been conducted in developed countries. Differences in the urban forms between China and Western countries make it essential to understand the role of greenspace in Chinese settings. From 2014 to 2015, middle school students (n = 5643) in Suzhou, China were enrolled in a study on the health effect of residential greenness. The normalized difference vegetation index (NDVI) and distance to the nearest park were calculated for each home address. Logistic regression was performed to test associations between exposure and self-reported doctor diagnoses of asthma, pneumonia, rhinitis, and eczema, adjusting for important confounders. No statistically significant associations were observed for any seasonal NDVI-based measures. However, the proximity of the participants’ residences to the closest park showed an inverse relationship to reported symptoms. The odds ratios for the furthest quartile compared to the closest quartile based on the distance to the nearest park were 0.58 (95% CI: 0.35, 0.99), 0.70 (95% CI: 0.50, 0.96), 0.92 (95% CI: 0.74, 1.15), 0.97 (95% CI: 0.76, 1.24), 0.86 (95% CI: 0.68, 1.10) for current asthma, ever asthma, ever pneumonia, ever rhinitis, and ever eczema, respectively. These findings focused on a single Chinese city and suggest that exposure to natural vegetation in urban areas may affect health through various pathways.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 19, No. 15 ( 2022-07-30), p. 9357-
    Abstract: Pregnant individuals are exposed to acetaminophen and caffeine, but it is unknown how these exposures interact with the developing gut microbiome. We aimed to determine whether acetaminophen and/or caffeine relate to the childhood gut microbiome and whether features of the gut microbiome alter the relationship between acetaminophen/caffeine and neurodevelopment. Forty-nine and 85 participants provided meconium and stool samples at 6–7, respectively, for exposure and microbiome assessment. Fecal acetaminophen and caffeine concentrations were quantified, and fecal DNA underwent metagenomic sequencing. Caregivers and study staff assessed the participants’ motor and cognitive development using standardized scales. Prenatal exposures had stronger associations with the childhood microbiome than concurrent exposures. Prenatal acetaminophen exposure was associated with a trend of lower gut bacterial diversity in childhood [β = −0.17 Shannon Index, 95% CI: (−0.31, −0.04)] and was marginally associated with differences in the relative abundances of features of the gut microbiome at the phylum (Firmicutes, Actinobacteria) and gene pathway levels. Among the participants with a higher relative abundance of Proteobacteria, prenatal exposure to acetaminophen and caffeine was associated with lower scores on WISC-IV subscales. Acetaminophen during bacterial colonization of the naïve gut is associated with lasting alterations in childhood microbiome composition. Future studies may inform our understanding of downstream health effects.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 17, No. 4 ( 2020-02-24), p. 1444-
    Abstract: Air pollution exposure during pregnancy has been associated with impaired fetal growth and postnatal weight gain, but few studies have examined the effect on weight growth trajectories. We examine the association between validated 1 km2 resolution particulate matter (PM2.5) concentrations, averaged over pregnancy, and sex-specific growth trajectories from birth to age six of participants in the Boston-based Children’s HealthWatch cohort (4797 participants, 84,283 measures). We compared weight trajectories, predicted using polynomial splines in mixed models, between prenatal PM2.5 above or below the median (9.5 µg/m3), and examined birth weight as an effect modifier. Females exposed to average prenatal PM2.5 ≥ 9.5 µg/m3 had higher weights compared to females exposed to 〈 9.5 µg/m3 throughout the study period (0.16 kg at 24 months, 0.61 kg at 60 months). In males, higher prenatal PM2.5 exposure was associated with significantly lower weights after 24 months of age, with differences increasing with time (−0.17 at 24 months, −0.72 kg at 60 months). Associations were more pronounced among low birth weight ( 〈 2500 g) females, but did not differ by birth weight status in males. Our findings demonstrate the complex association between air pollution exposures and childhood weight trajectories and emphasize the importance of sex-stratified analyses.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    MDPI AG ; 2018
    In:  International Journal of Environmental Research and Public Health Vol. 15, No. 6 ( 2018-06-12), p. 1248-
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 15, No. 6 ( 2018-06-12), p. 1248-
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Toxics, MDPI AG, Vol. 9, No. 11 ( 2021-11-16), p. 311-
    Abstract: Inhibition, one of the building blocks of executive function, is the ability to focus one’s attention despite interference from external stimuli. It undergoes substantial development during adolescence and may be susceptible to adverse impacts of prenatal exposure to chemical mixtures, yet few studies have explored this association. The New Bedford Cohort (NBC) is a birth cohort of residents living near the New Bedford Harbor Superfund site in Massachusetts. Among adolescents from the NBC, we investigated the association of biomarkers of prenatal exposure to organochlorines (DDE, HCB, PCBs) and metals (Pb, Mn) with inhibition, assessed with the Delis–Kaplan Executive Function System Design Fluency (non-verbal task) and Color–Word Interference (verbal task) subtests. An exploratory mixtures analysis using Bayesian kernel machine regression (BKMR) informed a traditional multivariable regression approach. NBC adolescents are diverse with 29% non-white and 31% in a low-income household at birth. Cord serum organochlorine concentrations and cord blood metals concentrations were generally similar to other birth cohorts. In BKMR models, we observed a suggestive adverse association of the chemical mixture with Color–Word Interference but not Design Fluency. In covariate-adjusted linear regression models including all five chemical exposure measures, a doubling of cord blood Mn was associated with poorer Color–Word Interference completion time scaled scores (difference = −0.74; 95% CI: −1.34, −0.14). This study provided evidence of an adverse joint association between prenatal exposure to a five-chemical mixture and verbal inhibition in adolescence with exposure to Mn potentially driving this overall association.
    Type of Medium: Online Resource
    ISSN: 2305-6304
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2733883-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Toxics Vol. 9, No. 12 ( 2021-12-02), p. 329-
    In: Toxics, MDPI AG, Vol. 9, No. 12 ( 2021-12-02), p. 329-
    Abstract: Cognitive flexibility, the ability to smoothly adapt to changing circumstances, is a skill that is vital to higher-level executive functions such as problem-solving, planning, and reasoning. As it undergoes substantial development during adolescence, decrements in cognitive flexibility may not become apparent until this time. There is evidence that prenatal exposure to individual chemicals may adversely impact executive functions in children, but few studies have explored the association of co-exposure to multiple chemicals with cognitive flexibility specifically among adolescents. We investigated this association among a diverse group of adolescents living near a Superfund site in New Bedford, Massachusetts. Specifically, using Bayesian kernel machine regression (BKMR) and multivariable regression analyses, we investigated the association of biomarkers of prenatal exposure to organochlorines (DDE, HCB, PCBs) and metals (lead, manganese) with cognitive flexibility, measured with four subtests of the Delis-Kaplan Executive Function System. In BKMR models, we observed adverse joint associations of the chemical mixture with two of the four cognitive flexibility subtests. In covariate-adjusted linear regression models, a two-fold increase in cord blood Mn was associated with poorer performance on two of the subtests: Trail-Making (scaled score difference = −0.60; 95% CI: −1.16, −0.05 points) and Color-Word Interference (scaled score difference = −0.53; 95% CI: −1.08, 0.01 points). These adverse Mn-cognitive flexibility associations were supported by the results of the BKMR. There was little evidence of effect modification by sex and some evidence of effect modification by a measure of social disadvantage, particularly for the associations between HCB and cognitive flexibility. This study is among the first to provide evidence of an adverse association of prenatal exposure to a chemical mixture with cognitive flexibility in adolescence.
    Type of Medium: Online Resource
    ISSN: 2305-6304
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2733883-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 19, No. 3 ( 2022-01-26), p. 1378-
    Abstract: Humans are exposed to a diverse mixture of chemical and non-chemical exposures across their lifetimes. Well-designed epidemiology studies as well as sophisticated exposure science and related technologies enable the investigation of the health impacts of mixtures. While existing statistical methods can address the most basic questions related to the association between environmental mixtures and health endpoints, there were gaps in our ability to learn from mixtures data in several common epidemiologic scenarios, including high correlation among health and exposure measures in space and/or time, the presence of missing observations, the violation of important modeling assumptions, and the presence of computational challenges incurred by current implementations. To address these and other challenges, NIEHS initiated the Powering Research through Innovative methods for Mixtures in Epidemiology (PRIME) program, to support work on the development and expansion of statistical methods for mixtures. Six independent projects supported by PRIME have been highly productive but their methods have not yet been described collectively in a way that would inform application. We review 37 new methods from PRIME projects and summarize the work across previously published research questions, to inform methods selection and increase awareness of these new methods. We highlight important statistical advancements considering data science strategies, exposure-response estimation, timing of exposures, epidemiological methods, the incorporation of toxicity/chemical information, spatiotemporal data, risk assessment, and model performance, efficiency, and interpretation. Importantly, we link to software to encourage application and testing on other datasets. This review can enable more informed analyses of environmental mixtures. We stress training for early career scientists as well as innovation in statistical methodology as an ongoing need. Ultimately, we direct efforts to the common goal of reducing harmful exposures to improve public health.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 16, No. 13 ( 2019-07-03), p. 2356-
    Abstract: DNA methylation may play a critical role in aging and age-related diseases. DNA methylation phenotypic age (DNAmPhenoAge) is a new aging biomarker and predictor of chronic disease risk. While smoking is a strong risk factor for chronic diseases and influences methylation, its influence on DNAmPhenoAge is unknown. We investigated associations of self-reported and epigenetic smoking indicators with DNAmPhenoAge acceleration in a longitudinal aging study in eastern Massachusetts. DNA methylation was measured in whole blood samples from multiple visits for 692 male participants in the Veterans Affairs Normative Aging Study during 1999–2013. Acceleration was defined using residuals from linear regression of the DNAmPhenoAge on the chronological age. Cumulative smoking (pack-years) was significantly associated with DNAmPhenoAge acceleration, whereas self-reported smoking status was not. We observed significant validated associations between smoking-related loci and DNAmPhenoAge acceleration for 52 CpG sites, where 18 were hypomethylated and 34 were hypermethylated, mapped to 16 genes. The AHRR gene had the most loci (N = 8) among the 16 genes. We generated a smoking aging index based on these 52 loci, which showed positive significant associations with DNAmPhenoAge acceleration. These epigenetic biomarkers may help to predict age-related risks driven by smoking.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...