GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-07-10
    Description: Gametophytes of the marine alga Chondrus crispus are more resistant than tetrasporophytes to infection by the filamentous endophytic alga Acrochaete operculata. It has been shown recently that carrageenan oligosaccharides from the resistant gametophytic generation of C. crispus stimulate the secretion of L-asparagine (L-Asn) by the endophyte and that the host generates hydrogen peroxide and 2-oxo-succinamic acid after contact with this amino acid. Here the response of C. crispus to L-Asn and its effect on the pathogen is investigated. Chondrus crispus released hydrogen peroxide, ammonium ions, and a carbonyl compound into the medium when exposed to L-Asn. This response was correlated with an increase in oxygen consumption. Inhibitor studies indicated the involvement of a flavoenzyme in the reaction, which was sensitive to high concentrations of the reaction product, ammonium, and to chlorpromazine, quinacrine, and cyanide, inhibitors of L-amino acid oxidase. Cell wall macerate of C. crispus also responded to L-Asn, while protoplasts were inactive. Uptake of L-Asn into the cell was not necessary for the response, suggesting that the involved L-amino acid oxidase is apoplastic. Acrochaete operculata was more sensitive to hydrogen peroxide than C. crispus and settlement of A. operculata zoospores on C. crispus was reduced by 86% in the presence of L-Asn. This reduced settlement could be prevented with catalase. Chondrus crispus thus features an apoplastic amino acid oxidase, which is involved in the control of its endophytic pathogen. The modulation of the amino acid secretion in A. operculata by carrageenan oligosaccharides is therefore a key issue in the etiology of the association.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-07-10
    Description: The related red seaweeds Gracilaria sp. from the eastern Mediterranean and Gracilaria chilensis from Chile were similar in their enzymatic inventory for halogenation. In both species, halogenation was dependent upon H(2)O(2) and thus driven by haloperoxidases. These could be inhibited with phosphate and reversibly inhibited with azide and were therefore apparently dependent upon vanadate. Both species generated in the first line bromoform and other brominated halocarbons. Gel electrophoresis under non-denaturating conditions demonstrated that both species expressed halogenating peroxidases. Elicitation of Gracilaria sp. with agar oligosaccharides resulted in marked increases in bromination, iodination, and chlorination. Production rates of volatile halocarbons and phenol red bromination both increased by a factor of eight, presumably due to increased availability for haloperoxidases of H(2)O(2) during the oxidative burst response. Elicitation of Gracilaria sp. also triggered a release of bromide ions through DIDS-sensitive anion channels, which allowed for some bromination in bromide-free medium. However, this effect was relatively limited. By contrast, agar oligosaccharide oxidation in G. chilensis did not increase halogenation. Obviously, agar oligosaccharide oxidation does not provide sufficient amounts of hypohalous acids for such increases, because it does not deliver H(2)O(2) at the active site of vanadium-dependent haloperoxidases. These results correlate with earlier findings that the agar oligosaccharide-elicited oxidative burst controls microorganisms while agar oligosaccharide oxidation does not.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Terrestrial plants are known to “garden” the microbiota of their rhizosphere via released metabolites (that can attract beneficial microbes and deter pathogenic microbes). Such a “gardening” capacity is also known to be dynamic in plants. Although microbial “gardening” has been recently demonstrated for seaweeds, we do not know whether this capacity is a dynamic property in any aquatic flora like in terrestrial plants. Here, we tested the dynamic microbial “gardening” capacity of seaweeds using the model invasive red seaweed Agarophyton vermiculophyllum. Following an initial extraction of surface-associated metabolites (immediately after field collection), we conducted a long-term mesocosm experiment for 5 months to test the effect of two different salinities (low = 8.5 and medium = 16.5) on the microbial “gardening” capacity of the alga over time. We tested “gardening” capacity of A. vermiculophyllum originating from two different salinity levels (after 5 months treatments) in settlement assays against three disease causing pathogenic bacteria and seven protective bacteria. We also compared the capacity of the alga with field-collected samples. Abiotic factors like low salinity significantly increased the capacity of the alga to deter colonization by pathogenic bacteria while medium salinity significantly decreased the capacity of the alga over time when compared to field-collected samples. However, capacity to attract beneficial bacteria significantly decreased at both tested salinity levels when compared to field-collected samples. Dynamic microbial “gardening” capacity of a seaweed to attract beneficial bacteria and deter pathogenic bacteria is demonstrated for the first time. Such a dynamic capacity as found in the current study could also be applicable to other aquatic host–microbe interactions. Our results may provide an attractive direction of research towards manipulation of salinity and other abiotic factors leading to better defended A. vermiculophyllum towards pathogenic bacteria thereby enhancing sustained production of healthy A. vermiculophyllum in farms
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    MDPI
    In:  Applied Sciences, 9 (6, Article 1258).
    Publication Date: 2022-01-31
    Description: In marine environments bacterial microfoulers are an important determinant for the settlement of algal and animal macrofoulers. At the same time fouling is usually subject to seasonal fluctuation. Additionally, the seagrass Zostera marina is prone to microfouling, although this marine spermatophyte is known to be chemically defended against bacterial settlers. Spermatophytes are often capable of induced or activated defences against biological enemies such as pathogens or herbivores, but it is still unknown whether they can fine-tune their antifouling-defence according to settlement pressure. We therefore assessed the seasonality of bacterial settlement pressure, defence against microsettlers and concentrations of a previously identified defence compound, rosmarinic acid, on surfaces of Z. marina. All examined variables peaked in summer, while they tended to be lower in spring and autumn. The seasonality of defence activity and rosmarinic acid surface concentration was positively correlated with the seasonal fluctuation of fouling pressure, which suggests that Z. marina can adjust its defence level to the relatively high bacterial fouling pressure in summer. Besides of biotic factors the seasonal change of environmental factors, such as nitrogen supply, and in particular temperature, also affected the defence level, either directly or through indirect effects on the microbial settlers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Epibacterial communities on seaweeds are affected by several abiotic factors such as temperature and acidification. Due to global warming, surface seawater temperatures are expected to increase by 0.5–5 °C in the next century. However, how epibacterial communities associated with seaweeds will respond to global warming remains unknown. In this study, we investigated the response of epibacterial communities associated with the invasive Gracilaria vermiculophylla exposed to 3 °C above ambient temperature for 4 months using a benthocosm system in Kiel, Germany, and 16S rRNA gene amplicon sequencing. The results showed that elevated temperature affected the beta-diversity of the epibacterial communities. Some potential seaweed pathogens such as Pseudoalteromonas, Vibrio, Thalassotalea, and Acinetobacter were identified as indicator genera at the elevated temperature level. Thirteen core raw amplicon sequence variants in the elevated temperature group were the same as the populations distributed over a wide geographical range, indicating that these core ASVs may play an important role in the invasive G. vermicullophylla. Overall, this study not only contributes to a better understanding of how epibacterial communities associated with G. vermiculophylla may adapt to ocean warming, but also lays the foundation for further exploration of the interactions between G. vermiculophylla and its epimicrobiota.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Mechanisms related to the induction of phlorotannin biosynthesis in marine brown algae remain poorly known. Several studies undertaken on fucoid species have shown that phlorotannins accumulate in the algae for several days or weeks after being exposed to grazing, and this is measured by direct quantification of soluble phenolic compounds. In order to investigate earlier inducible responses involved in phlorotannin metabolism, Fucus vesiculosus was studied between 6 and 72 h of grazing by the sea snail Littorina littorea. In this study, the quantification of soluble phenolic compounds was complemented by a Quantitative real-time PCR (qRT-PCR) approach applied on genes that are potentially involved in either the phlorotannin metabolism or stress responses. Soluble phlorotannin levels remained stable during the kinetics and increased significantly only after 12 h in the presence of grazers, compared to the control, before decreasing to the initial steady state for the rest of the kinetics. Under grazing conditions, the expression of vbpo, cyp450 and ast6 genes was upregulated, respectively, at 6 h, 12 h and 24 h, and cyp450 gene was downregulated after 72 h. Interestingly, the pksIII gene involved in the synthesis of phloroglucinol was overexpressed under grazing conditions after 24 h and 72 h. This study supports the hypothesis that phlorotannins are able to provide an inducible chemical defense under grazing activity, which is regulated at different stages of the stress response.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...