GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-06-20
    Description: Time-variable gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow On (GRACE-FO) missions and satellite altimetry measurements from CryoSat-2 enable independent mass balance estimates of the Earth’s glaciers and ice sheets. Both approaches vary in terms of their retrieval principles and signal-to-noise characteristics. GRACE/GRACE-FO recovers the gravity disturbance caused by changes in the mass of the entire ice sheet with a spatial resolution of 300 to 400 km. In contrast, CryoSat-2measures travel times of a radar signal reflected close to the ice sheet surface, allowing changes of the surface topography to be determined with about 5 km spatial resolution. Here, we present a method to combine observations from the both sensors, taking into account the different signal and noise characteristics of each satellite observation that are dependent on the spatial wavelength. We include uncertainties introduced by the processing and corrections, such as the choice of the re-tracking algorithm and the snow/ice volume density model for CryoSat-2, or the filtering of correlated errors and the correction for glacial-isostatic adjustment (GIA) for GRACE. We apply our method to the Antarctic ice sheet and the time period 2011–2017, in which GRACE and CryoSat-2 were simultaneously operational, obtaining a total ice mass loss of 178 ± 23 Gt yr−1. We present a map of the rate of mass change with a spatial resolution of 40 km that is evaluable across all spatial scales, and more precise than estimates based on a single satellite mission.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-18
    Description: The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades, and it is expected to continue to be so. Although increases in glacier flow and surface melting have been driven by oceanic and atmospheric warming, the magnitude and trajectory of the ice sheet’s mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet’s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 ± 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 ± 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 ± 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 ± 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 ± 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 ± 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions and ocean temperatures fell at the terminus of Jakobshavn Isbræ. Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario, which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate.
    Description: Published
    Description: 233–239
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...