GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • WILEY-BLACKWELL PUBLISHING  (10)
  • Kiel : Inst. für Meereskunde  (2)
  • SPRINGER  (2)
  • 1
    Keywords: Report ; Dissertation ; Hochschulschrift ; Phytobenthos ; Mikroalgen
    Type of Medium: Book
    Pages: 157, A32 S , graph. Darst., Kt
    Series Statement: Berichte aus dem Institut für Meereskunde and der Christian-Albrechts-Universität Kiel 308
    Language: English
    Note: Literaturverz. S. 138 - 155 , Zugl.: Kiel, Univ., Diss., 1999
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Report ; Dissertation ; Hochschulschrift ; Phytobenthos ; Mikroalgen
    Type of Medium: Online Resource
    Pages: Online-Ressource (191 Seiten, 44 MB) , Diagramme, Karte
    Series Statement: Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität Kiel 308
    Language: English
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3Global Change Biology, WILEY-BLACKWELL PUBLISHING, 24(10), pp. 4532-4543, ISSN: 1354-1013
    Publication Date: 2018-11-09
    Description: While there is a lot of data on interactive effects of eutrophication and warming, to date, we lack data to generate reliable predictions concerning possible effects of nutrient decrease and temperature increase on community composition and functional responses. In recent years, a wide‐ranging trend of nutrient decrease (re‐oligotrophication) was reported for freshwater systems. Small lakes and ponds, in particular, show rapid responses to anthropogenic pressures and became model systems to investigate single as well as synergistic effects of warming and fertilization in situ and in experiments. Therefore, we set up an experiment to investigate the single as well as the interactive effects of nutrient reduction and gradual temperature increase on a natural freshwater phytoplankton community, using an experimental indoor mesocosm setup. Biomass production initially increased with warming but decreased with nutrient depletion. If nutrient supply was constant, biomass increased further, especially under warming conditions. Under low nutrient supply, we found a sharp transition from initially positive effects of warming to negative effects when resources became scarce. Warming reduced phytoplankton richness and evenness, whereas nutrient reduction at ambient temperature had positive effects on diversity. Our results indicate that temperature effects on freshwater systems will be altered by nutrient availability. These interactive effects of energy increase and resource decrease have major impacts on biodiversity and ecosystem function and thus need to be considered in environmental management plans.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    SPRINGER
    In:  EPIC3Marine Biology, SPRINGER, 166(163), ISSN: 0025-3162
    Publication Date: 2020-05-27
    Description: Planktonic primary consumers have been shown to strongly influence phytoplankton communities via top-down effects such as grazing and nutrient recycling. However, it remains unclear how changes in consumer richness may alter the stoichiometric constrains between producer and consumer assemblages. Here we test whether the stoichiometry of producer–consumer interactions is affected by the species richness of the consumer community (multispecies consumer assemblage vs single consumer species). Therefore, we fed a phytoplankton assemblage consisting of two flagellates and two diatom species reared under a 2 × 2 factorial combination of light and nitrogen supply to three planktonic consumer species in mono- and polycultures. As expected, phytoplankton biomass and C:nutrient ratios significantly increased with light intensity while nitrogen limitation resulted in reduced phytoplankton biomass and increasing phytoplankton C:N but lower N:P. Differences in phytoplankton stoichiometry were partly transferred to the consumer level, i.e., consumer C:N significantly increased with phytoplankton C:N. Consumer diversity significantly increased consumer biomass, resource use efficiency and nutrient uptake. In turn, consumer N:P ratios significantly decreased in consumer assemblages under high resource supply due to unequal changes in nutrient uptake. Consumer diversity further altered phytoplankton biomass, stoichiometry and species composition via increased consumption. Whether the effects of consumer diversity on phytoplankton and consumer performance were positive or negative strongly depended on the resource supply. In conclusion, the stoichiometric constraints of trophic interactions in multispecies assemblages cannot be predicted from monoculture traits alone, but consumer diversity effects are constrained by the resources supplied.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-13
    Description: The sea surface microlayer (SML) is the boundary layer between the ocean and the atmosphere and plays a unique role in marine biogeochemistry. Phytoplankton communities in this uppermost surface layer are exposed to extreme ultraviolet (UV) radiation and potentially high nutrient supplies. In order to understand the response of SML communities to such contrasting conditions, we conducted experiments at three different sites, the North Sea (open ocean) and two sites, outer and middle fjord, in the Sognefjord, Norway, with differing physical and chemical parameters. We manipulated light, nitrogen (N) and phosphorus (P) supply to natural communities collected from the SML and compared their response to that of the underlying water (ULW) communities at 1-m depth. Phytoplankton communities in both SML and ULW responded significantly to N addition, suggesting the upper 1-m surface phytoplankton communities were N-limited. While phytoplankton growth rates were higher with high N and high light supply, biomass yield was higher under low light conditions and with a combined N and P supply. Furthermore, biomass yield was generally higher in the ULW communities compared to SML communities. Nutrient and light effects on phytoplankton growth rates, particulate organic carbon (POC) and stoichiometry varied with geographical location. Phytoplankton growth rates in both SML and ULW at the open ocean station, the site with highest salinity, did not respond to light changes, whereas the communities in the middle fjord, characterized by high turbidity and low salinity, did experience light limitation. This work on the upper surface phytoplankton communities provides new insights into possible effects of coastal darkening and increases understanding of oceanic biogeochemical cycling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3Conservation Biology, WILEY-BLACKWELL PUBLISHING, ISSN: 0888-8892
    Publication Date: 2020-11-26
    Description: Estimates of biodiversity change are essential for the management and conservation of ecosystems. Accurate estimates rely on selecting representative sites, but monitoring often focuses on sites of special interest. How such site‐selection biases influence estimates of biodiversity change is largely unknown. Site‐selection bias potentially occurs across four major sources of biodiversity data, decreasing in likelihood from citizen science, museums, national park monitoring, and academic research. We defined site‐selection bias as a preference for sites that are either densely populated (i.e., abundance bias) or species rich (i.e., richness bias). We simulated biodiversity change in a virtual landscape and tracked the observed biodiversity at a sampled site. The site was selected either randomly or with a site‐selection bias. We used a simple spatially resolved, individual‐based model to predict the movement or dispersal of individuals in and out of the chosen sampling site. Site‐selection bias exaggerated estimates of biodiversity loss in sites selected with a bias by on average 300–400% compared with randomly selected sites. Based on our simulations, site‐selection bias resulted in positive trends being estimated as negative trends: richness increase was estimated as 0.1 in randomly selected sites, whereas sites selected with a bias showed a richness change of −0.1 to −0.2 on average. Thus, site‐selection bias may falsely indicate decreases in biodiversity. We varied sampling design and characteristics of the species and found that site‐selection biases were strongest in short time series, for small grains, organisms with low dispersal ability, large regional species pools, and strong spatial aggregation. Based on these findings, to minimize site‐selection bias, we recommend use of systematic site‐selection schemes; maximizing sampling area; calculating biodiversity measures cumulatively across plots; and use of biodiversity measures that are less sensitive to rare species, such as the effective number of species. Awareness of the potential impact of site‐selection bias is needed for biodiversity monitoring, the design of new studies on biodiversity change, and the interpretation of existing data.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3Ecology Letters, WILEY-BLACKWELL PUBLISHING, ISSN: 1461-023X
    Publication Date: 2017-11-14
    Description: Ecological stability is the central framework to understand an ecosystem’s ability to absorb or recover from environmental change. Recent modelling and conceptual work suggests that stability is a multidimensional construct comprising different response aspects. Using two freshwater mesocosm experiments as case studies, we show how the response to single perturbations can be decomposed in different stability aspects (resistance, resilience, recovery, temporal stability) for both ecosystem functions and community composition. We find that extended community recovery is tightly connected to a nearly complete recovery of the function (biomass production), whereas systems with incomplete recovery of the species composition ranged widely in their biomass compared to controls. Moreover, recovery was most complete when either resistance or resilience was high, the latter associated with low temporal stability around the recovery trend. In summary, no single aspect of stability was sufficient to reflect the overall stability of the system.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-01-10
    Description: The research of a generation of ecologists was catalysed by the recognition that the number and identity of species in communities influences the functioning of ecosystems. The relationship between biodiversity and ecosystem functioning (BEF) is most often examined by controlling species richness and randomising community composition. In natural systems, biodiversity changes are often part of a bigger community assembly dynamic. Therefore, focusing on community assembly and the functioning of ecosystems (CAFE), by integrating both species richness and composition through species gains, losses and changes in abundance, will better reveal how community changes affect ecosystem function. We synthesise the BEF and CAFE perspectives using an ecological application of the Price equation, which partitions the contributions of richness and composition to function. Using empirical examples, we show how the CAFE approach reveals important contributions of composition to function. These examples show how changes in species richness and composition driven by environmental perturbations can work in concert or antagonistically to influence ecosystem function. Considering how communities change in an integrative fashion, rather than focusing on one axis of community structure at a time, will improve our ability to anticipate and predict changes in ecosystem function.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-11-08
    Description: Global concern about human impact on biological diversity has triggered an intense research agenda on drivers and consequences of biodiversity change in parallel with international policy seeking to conserve biodiversity and associated ecosystem functions. Quantifying the trends in biodiversity is far from trivial, however, as recently documented by meta-analyses, which report little if any net change in local species richness through time. Here, we summarise several limitations of species richness as a metric of biodiversity change and show that the expectation of directional species richness trends under changing conditions is invalid. Instead, we illustrate how a set of species turnover indices provide more information content regarding temporal trends in biodiversity, as they reflect how dominance and identity shift in communities over time. We apply these metrics to three monitoring datasets representing different ecosystem types. In all datasets, nearly complete species turnover occurred, but this was disconnected from any species richness trends. Instead, turnover was strongly influenced by changes in species presence (identities) and dominance (abundances). We further show that these metrics can detect phases of strong compositional shifts in monitoring data and thus identify a different aspect of biodiversity change decoupled from species richness. Synthesis and applications: Temporal trends in species richness are insufficient to capture key changes in biodiversity in changing environments. In fact, reductions in environmental quality can lead to transient increases in species richness if immigration or extinction has different temporal dynamics. Thus, biodiversity monitoring programmes need to go beyond analyses of trends in richness in favour of more meaningful assessments of biodiversity change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3Global Ecology and Biogeography, WILEY-BLACKWELL PUBLISHING, 29(6), pp. 1008-1019, ISSN: 1466-822X
    Publication Date: 2020-06-17
    Description: Aim Biodiversity dynamics comprise evolutionary and ecological changes on multiple temporal scales from millions of years to decades, but they are often interpreted within a single time frame. Planktonic foraminifera communities offer a unique opportunity for analysing the dynamics of marine biodiversity over different temporal scales. Our study aims to provide a baseline for assessments of biodiversity patterns over multiple time-scales, which is urgently needed to interpret biodiversity responses to increasing anthropogenic pressure. Location Global (26 sites). Time period Five time-scales: multi-million-year (0-7 Myr), million-year (0-0.5 Myr), multi-millennial (0-15 thousand years), millennial (0-1,100 years) and decadal (0-32 years). Major taxa studied Planktonic foraminifera. Methods We analysed community composition of planktonic foraminifera at five time-scales, combining measures of standing diversity (richness and effective number of species, ENS) with measures of temporal community turnover (presence-absence-based, dominance-based). Observed biodiversity patterns were compared with the outcome of a neutral model to separate the effects of sampling resolution (the highest in the shortest time series) from biological responses. Results Richness and ENS decreased from multi-million-year to millennial time-scales, but higher standing diversity was observed on the decadal scale. As predicted by the neutral model, turnover in species identity and dominance was strongest at the multi-million-year time-scale and decreased towards the millennial scale. However, contrary to the model predictions, modern time series show rapid decadal variation in the dominance structure of foraminifera communities, which is of comparable magnitude as over much longer time periods. Community turnover was significantly correlated with global temperature change, but not on the shortest time-scale. Main conclusions Biodiversity patterns can be to some degree predicted from the scaling effects related to different durations of time series, but changes in the dominance structure observed over the last few decades reach higher magnitude, probably forced by anthropogenic effects, than those observed over much longer durations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...