GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Report ; Dissertation ; Hochschulschrift ; Phytobenthos ; Mikroalgen
    Type of Medium: Book
    Pages: 157, A32 S , graph. Darst., Kt
    Series Statement: Berichte aus dem Institut für Meereskunde and der Christian-Albrechts-Universität Kiel 308
    Language: English
    Note: Literaturverz. S. 138 - 155 , Zugl.: Kiel, Univ., Diss., 1999
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Report ; Dissertation ; Hochschulschrift ; Phytobenthos ; Mikroalgen
    Type of Medium: Online Resource
    Pages: Online-Ressource (191 Seiten, 44 MB) , Diagramme, Karte
    Series Statement: Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität Kiel 308
    Language: English
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ROYAL SOC
    In:  EPIC3Philosophical Transactions of the Royal Society B-Biological Sciences, ROYAL SOC, 375(1814), ISSN: 0962-8436
    Publication Date: 2020-11-12
    Description: Whereas the conservation and management of biodiversity has become a key issue in environmental sciences and policy in general, the conservation of marine biodiversity faces additional challenges such as the challenges of accessing field sites (e.g. polar, deep sea), knowledge gaps regarding biodiversity trends, high mobility of many organisms in fluid environments, and ecosystem-specific obstacles to stakeholder engagement and governance. This issue comprises contributions from a diverse international group of scientists in a benchmarking volume for a common research agenda on marine conservation. We begin by addressing information gaps on marine biodiversity trends through novel approaches and technologies, then linking such information to ecosystem functioning through a focus on traits. We then leverage the knowledge of these relationships to inform theory aiming at predicting the future composition and functioning of marine communities. Finally, we elucidate the linkages between marine ecosystems and human societies by examining economic, management and governance approaches that contribute to effective marine conservation in practice. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    SPRINGER
    In:  EPIC3Marine Biology, SPRINGER, 166(163), ISSN: 0025-3162
    Publication Date: 2020-05-27
    Description: Planktonic primary consumers have been shown to strongly influence phytoplankton communities via top-down effects such as grazing and nutrient recycling. However, it remains unclear how changes in consumer richness may alter the stoichiometric constrains between producer and consumer assemblages. Here we test whether the stoichiometry of producer–consumer interactions is affected by the species richness of the consumer community (multispecies consumer assemblage vs single consumer species). Therefore, we fed a phytoplankton assemblage consisting of two flagellates and two diatom species reared under a 2 × 2 factorial combination of light and nitrogen supply to three planktonic consumer species in mono- and polycultures. As expected, phytoplankton biomass and C:nutrient ratios significantly increased with light intensity while nitrogen limitation resulted in reduced phytoplankton biomass and increasing phytoplankton C:N but lower N:P. Differences in phytoplankton stoichiometry were partly transferred to the consumer level, i.e., consumer C:N significantly increased with phytoplankton C:N. Consumer diversity significantly increased consumer biomass, resource use efficiency and nutrient uptake. In turn, consumer N:P ratios significantly decreased in consumer assemblages under high resource supply due to unequal changes in nutrient uptake. Consumer diversity further altered phytoplankton biomass, stoichiometry and species composition via increased consumption. Whether the effects of consumer diversity on phytoplankton and consumer performance were positive or negative strongly depended on the resource supply. In conclusion, the stoichiometric constraints of trophic interactions in multispecies assemblages cannot be predicted from monoculture traits alone, but consumer diversity effects are constrained by the resources supplied.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-13
    Description: The sea surface microlayer (SML) is the boundary layer between the ocean and the atmosphere and plays a unique role in marine biogeochemistry. Phytoplankton communities in this uppermost surface layer are exposed to extreme ultraviolet (UV) radiation and potentially high nutrient supplies. In order to understand the response of SML communities to such contrasting conditions, we conducted experiments at three different sites, the North Sea (open ocean) and two sites, outer and middle fjord, in the Sognefjord, Norway, with differing physical and chemical parameters. We manipulated light, nitrogen (N) and phosphorus (P) supply to natural communities collected from the SML and compared their response to that of the underlying water (ULW) communities at 1-m depth. Phytoplankton communities in both SML and ULW responded significantly to N addition, suggesting the upper 1-m surface phytoplankton communities were N-limited. While phytoplankton growth rates were higher with high N and high light supply, biomass yield was higher under low light conditions and with a combined N and P supply. Furthermore, biomass yield was generally higher in the ULW communities compared to SML communities. Nutrient and light effects on phytoplankton growth rates, particulate organic carbon (POC) and stoichiometry varied with geographical location. Phytoplankton growth rates in both SML and ULW at the open ocean station, the site with highest salinity, did not respond to light changes, whereas the communities in the middle fjord, characterized by high turbidity and low salinity, did experience light limitation. This work on the upper surface phytoplankton communities provides new insights into possible effects of coastal darkening and increases understanding of oceanic biogeochemical cycling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    ROYAL SOC
    In:  EPIC3Philosophical Transactions of the Royal Society B-Biological Sciences, ROYAL SOC, 375, pp. 20190452, ISSN: 0962-8436
    Publication Date: 2020-11-03
    Description: Whereas the anthropogenic impact on marine biodiversity is undebated, the quantification and prediction of this change are not trivial. Simple traditional measures of biodiversity (e.g. richness, diversity indices) do not capture the magnitude and direction of changes in species or functional composition. In this paper, we apply recently developed methods for measuring biodiversity turnover to time-series data of four broad taxonomic groups from two coastal regions: the southern North Sea (Germany) and the South African coast. Both areas share geomorphological features and ecosystem types, allowing for a critical assessment of the most informative metrics of biodiversity change across organism groups. We found little evidence for directional trends in univariate metrics of diversity for either the effective number of taxa or the amount of richness change. However, turnover in composition was high (on average nearly 30% of identities when addressing presence or absence of species) and even higher when taking the relative dominance of species into account. This turnover accumulated over time at similar rates across regions and organism groups. We conclude that biodiversity metrics responsive to turnover provide a more accurate reflection of community change relative to conventional metrics (absolute richness or relative abundance) and are spatially broadly applicable. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-10-07
    Description: The relationship between biodiversity and ecosystem functioning (BEF) is a topic of considerable interest to scientists and managers because a better understanding of its underlying mechanisms may help us mitigate the consequences of biodiversity loss on ecosystems. Our current knowledge of BEF relies heavily on theoretical and experimental studies, typically conducted on a narrow range of spatio-temporal scales, environmental conditions, and trophic levels. Hence, whether a relationship holds in the natural environment is poorly understood, especially in exploited marine ecosystems. Using large-scale observations of marine fish communities, we applied a structural equation modelling framework to investigate the existence and significance of BEF relationships across northwestern European seas. We find that ecosystem functioning, here represented by spatial patterns in total fish biomass, is unrelated to species richness—the most commonly used diversity metric in BEF studies. Instead, community evenness, differences in species composition, and abiotic variables are significant drivers. In particular, we find that high fish biomass is associated with fish assemblages dominated by a few generalist species of a high trophic level, who are able to exploit both the benthic and pelagic energy pathway. Our study provides a better understanding of the mechanisms behind marine ecosystem functioning and allows for the integration of biodiversity into management considerations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...