GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Active upwelling  (1)
  • Core complex  (1)
  • John Wiley & Sons  (2)
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 119 (2014): 3722–3739, doi:10.1002/2013JB010512.
    Description: We present a mechanical model to explain why most seismically active normal faults have dips much lower (30–60°) than expected from Anderson-Byerlee theory (60–65°). Our model builds on classic finite extension theory but incorporates rotation of the active fault plane as a response to the buildup of bending stresses with increasing extension. We postulate that fault plane rotation acts to minimize the amount of extensional work required to sustain slip on the fault. In an elastic layer, this assumption results in rapid rotation of the active fault plane from ~60° down to 30–45° before fault heave has reached ~50% of the faulted layer thickness. Commensurate but overall slower rotation occurs in faulted layers of finite strength. Fault rotation rates scale as the inverse of the faulted layer thickness, which is in quantitative agreement with 2-D geodynamic simulations that include an elastoplastic description of the lithosphere. We show that fault rotation promotes longer-lived fault extension compared to continued slip on a high-angle normal fault and discuss the implications of such a mechanism for fault evolution in continental rift systems and oceanic spreading centers.
    Description: This work was supported by NSF grants OCE-1154238 and EAR-1010432.
    Description: 2014-10-24
    Keywords: Normal fault dip ; Fault rotation ; Core complex ; Work minimization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 17 (2016): 2354–2373, doi:10.1002/2016GC006380.
    Description: We use data from an extensive multibeam bathymetry survey of the Chile Ridge to study tectonomagmatic processes at the ridge axis. Specifically, we investigate how abyssal hills evolve from axial faults, how variations in magmatic extension influence morphology and faulting along the spreading axis, and how these variations correlate with ridge segmentation. The bathymetry data are used to estimate the fraction of plate separation accommodated by normal faulting, and the remaining fraction of extension, M, is attributed primarily to magmatic accretion. Results show that M ranges from 0.85 to 0.96, systematically increasing from first-order and second-order ridge segment offsets toward segment centers as the depth of ridge axis shoals relative to the flanking highs of the axial valley. Fault spacing, however, does not correlate with ridge geometry, morphology, or M along the Chile Ridge, which suggests the observed increase in tectonic strain toward segment ends is achieved through increased slip on approximately equally spaced faults. Variations in M along the segments follow variations in petrologic indicators of mantle melt fraction, both showing a preferred length scale of 50 ± 20 km that persists even along much longer ridge segments. In comparison, mean M and axial relief fail to show significant correlations with distance offsetting the segments. These two findings suggest a form of magmatic segmentation that is partially decoupled from the geometry of the plate boundary. We hypothesize this magmatic segmentation arises from cells of buoyantly upwelling mantle that influence tectonic segmentation from the mantle, up.
    Description: NSF grants Grant Number: OCE-11-55098; (S.M.H. and G.I.) and OCE-11-54238
    Description: 2016-12-24
    Keywords: Chile Ridge ; Active upwelling ; Abyssal hill evolution ; Faulting and magmatism ; Ridge morphology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...