GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Integrated Ocean Drilling Program Management International, Inc.  (1)
  • National Academy of Sciences  (1)
  • 1
    facet.materialart.
    Unknown
    Integrated Ocean Drilling Program Management International, Inc.
    In:  Proceedings of the Integrated Ocean Drilling Program, 320/321 . Integrated Ocean Drilling Program Management International, Inc., Tokyo, Japan, Diverse Zählungen pp.
    Publication Date: 2019-06-25
    Description: Integrated Ocean Drilling Program Expedition 320/321, "Pacific Equatorial Age Transect" (Sites U1331–U1338), was designed to recover a continuous Cenozoic record of the equatorial Pacific by coring above the paleoposition of the Equator at successive crustal ages on the Pacific plate. These sediments record the evolution of the equatorial climate system throughout the Cenozoic. As we gained more information about the past movement of plates and when in Earth's history "critical" climate events took place, it became possible to drill an age transect ("flow-line") along the position of the paleoequator in the Pacific, targeting important time slices where the sedimentary archive allows us to reconstruct past climatic and tectonic conditions. The Pacific Equatorial Age Transect (PEAT) program cored eight sites from the sediment surface to basement, with basalt aged between 53 and 18 Ma, covering the time period following maximum Cenozoic warmth, through initial major glaciations, to today. The PEAT program allows the reconstruction of extreme changes of the calcium carbonate compensation depth (CCD) across major geological boundaries during the last 53 m.y. A very shallow CCD during most of the Paleogene makes it difficult to obtain well-preserved carbonate sediments during these stratigraphic intervals, but Expedition 320 recovered a unique sedimentary biogenic sediment archive for time periods just after the Paleocene/Eocene boundary event, the Eocene cooling, the Eocene–Oligocene transition, the "one cold pole" Oligocene, the Oligocene–Miocene transition, and the middle Miocene cooling. Expedition 321, the second part of the PEAT program, recovered sediments from the time period roughly from 25 Ma forward, including sediments crossing the Oligocene/Miocene boundary and two major Neogene equatorial Pacific sediment sections. Together with older Deep Sea Drilling Project and Ocean Drilling Program drilling in the equatorial Pacific, we can delineate the position of the paleoequator and variations in sediment thickness from ~150°W to 110°W longitude.
    Type: Report , NonPeerReviewed
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 114 (2017): 13114-13119, doi: 10.1073/pnas.1702143114.
    Description: During the Mid-Pleistocene Transition (MPT; 1,200–800 kya), Earth’s orbitally paced ice age cycles intensified, lengthened from ∼40,000 (∼40 ky) to ∼100 ky, and became distinctly asymmetrical. Testing hypotheses that implicate changing atmospheric CO2 levels as a driver of the MPT has proven difficult with available observations. Here, we use orbitally resolved, boron isotope CO2 data to show that the glacial to interglacial CO2 difference increased from ∼43 to ∼75 μatm across the MPT, mainly because of lower glacial CO2 levels. Through carbon cycle modeling, we attribute this decline primarily to the initiation of substantive dust-borne iron fertilization of the Southern Ocean during peak glacial stages. We also observe a twofold steepening of the relationship between sea level and CO2-related climate forcing that is suggestive of a change in the dynamics that govern ice sheet stability, such as that expected from the removal of subglacial regolith or interhemispheric ice sheet phase-locking. We argue that neither ice sheet dynamics nor CO2 change in isolation can explain the MPT. Instead, we infer that the MPT was initiated by a change in ice sheet dynamics and that longer and deeper post-MPT ice ages were sustained by carbon cycle feedbacks related to dust fertilization of the Southern Ocean as a consequence of larger ice sheets.
    Description: Research was supported by National Environmental Research Council (NERC) Studentship NE/I528626/1 (to T.B.C.); NERC Grant NE/P011381/1 (to T.B.C., M.P.H., G.L.F., E.J.R., and P.A.W.); NERC Fellowships NE/K00901X/1 (to M.P.H.), NE/I006346/1 (to G.L.F. and R.D.P), and NE/H006273/1 (to R.D.P.); Royal Society Wolfson Awards (to G.L.F. and P.A.W.); Australian Research Council Laureate Fellowship FL1201000050 (to E.J.R.); Swiss National Science Foundation Grant PP00P2-144811 (to S.L.J.); ETH Research Grant ETH-04 11-1 (to S.L.J.); European Research Council Consolidator Grant (ERC CoG) Grant 617462 (to H.P.); and NERC UK IODP Grant NE/F00141X/1 (to P.A.W.).
    Keywords: Boron isotopes ; MPT ; Geochemistry ; Carbon dioxide ; Paleoclimate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...