GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • IOW  (1)
  • International Phycological Society  (1)
  • 1
    Publication Date: 2019-12-03
    Description: Polar coralline red algae (Corallinales, Rhodophyta) that form rhodoliths have received little attention concerning their potential as ecosystem engineers and carbonate factories; although, recent findings revealed that they are much more widespread in polar waters than previously thought. The present study deals with the northernmost rhodolith communities currently known, discovered in 2006 at 80 degrees 31'N in Nordkappbukta (North Cape Bay) at Nordaustlandet, Svalbard. These perennial coralline algae must be adapted to extreme seasonality in terms of light regime (c. 4 months winter darkness), sea ice coverage, nutrient supply, turbidity of the water column, temperature and salinity. The rhodolith communities and their environment were investigated using multibeam swath bathymetry, CTD measurements, recordings of the photosynthetic active radiation (PAR) and determination of the water chemistry, seabed imaging and targeted sampling by means of the manned submersible JAGO as well as benthic collections with a dredge. The coralline flora was composed mainly of Lithothamnion glaciale, with a lesser amount of Phymatolithon tenue. Based on their distribution and development at different depth levels, a facies model was developed. Rhodoliths occurred between 30 and 51 m, while coralline algae attached to cobbles were present as deep as 78 m. Measurements of the PAR indicated their adaptation to extreme low light levels. Ambient waters were always saturated with reference to calcite and aragonite for the whole area. The rhodolith-associated macrobenthic fauna samples yielded 59 species, only one of which was typically Arctic, and the concomitant appearance of corallines and grazers kept the corallines free from epiphytes and coequally provided feeding grounds for the grazers. Overall, L. glaciate and P. tenue appeared to be well adapted to the extreme environment of the Arctic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Optic technologies and methods/procedures are established across all areas and scales in limnic and marine research in Germany and develop further continuously. The working group “Aquatic Optic Technologies” (AOT) constitutes a common platform for knowledge transfer among scientists and users, provides a synergistic environment for the national developer community and will enhance the international visibility of the German activities in this field. This document summarizes the AOT-procedures and -techniques applied by national research institutions. We expect to initiate a trend towards harmonization across institutes. This will facilitate the establishment of open standards, provide better access to documentation, and render technical assistance for systems integration. The document consists of the parts: Platforms and carrier systems outlines the main application areas and the used technologies. Focus parameters specifies the parameters measured by means of optical methods/techniques and indicates to which extent these parameters have a socio-political dimension. Methods presents the individual optical sensors and their underlying physical methods. Similarities denominates the common space of AOT-techniques and applications. National developments lists projects and developer groups in Germany designing optical high-technologies for limnic and marine scientific purposes.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...