GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Organic compounds-Synthesis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (590 pages)
    Edition: 1st ed.
    ISBN: 9780323996440
    DDC: 620.1180286
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Singapore : Springer Singapore | Singapore : Imprint: Springer
    Keywords: Microbiology. ; Microbial ecology. ; Environmental engineering. ; Biotechnology. ; Mikrobieller Abbau
    Description / Table of Contents: 1 Microbial degradation of aflatoxin -- 2 Recent Advances in Microbial Degradation -- 3 Microbial Degradation in the Biogas Production of Value-added Compounds -- 4 Microbial Degradation of Disinfectants -- 5 Application of Microalgae Consortia / Cocultures in Wastewater Treatment -- 6 Microbial Degradation of Food Products -- 7 Microbial Degradation of Xenobiotic Compounds -- 8 Microbial Degradation in the Production of Value-added Compounds: Biohydrogen from Dark Fermentation and Microbial Electrolysis cell -- 9 Microbial Degradation of Lipids -- 10 Microbial Degradation of Steroids -- 11 Microbial Degradation of Phenol and Phenolic Compounds -- 12 Microbial Degradation of Chlorophenolic Compounds -- 13 Microbial Degradation of Proteins -- 14 The Microbial Degradation of Microplastics -- 15 Microbial Degradation of Antibiotics from Effluents -- 16 Microbial Degradation of Oils -- 17 Microbial Degradation of Biowaste for Hydrogen Production -- 18 Microorganisms and Soil Bioremediation: An Environmental Approach -- 19 Applications of Microbes in Bioremediation of Water Pollutants. .
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VII, 483 p. 88 illus., 34 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9789811605185
    Series Statement: Environmental and Microbial Biotechnology
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Singapore : Springer Singapore | Singapore : Imprint: Springer
    Keywords: Microbiology.
    Description / Table of Contents: Chapter 1.Impact of isotropic and anisotropic plasmonic metal nanoparticles on healthcare and food-safety management -- Chapter 2. An introduction to different methods of nanoparticles synthesis -- Chapter 3. Classification, Synthesis, and Application of Nanoparticles against Infectious Diseases -- Chapter 4. Nanotechnology in Food Science -- Chapter 5. Facets of Nanotechnology in food processing, packaging and safety: an emerald insight -- Chapter 6. Nanotechnology and its potential application in postharvest technology -- Chapter 7. Nanotechnology mediated detection and control of phytopathogens -- Chapter 8. Nanosystems for Cancer Therapy -- Chapter 9. Phytoplankton mediated nanoparticles for cancer therapy. Chapter 10. Nanotechnology and its potential implications in Ovary Cancer -- Chapter 11. Nanotechnology: An Emerging Field in Protein Aggregation and Cancer Therapeutics -- Chapter 12. Bio-nano interface and its potential application in Alzheimer’s disease -- Chapter 13. Potential of curcumin nanoparticles in tuberculosis management -- Chapter 14. Application of Nanobiosensor in Health care sector -- Chapter 15. Bioactive nanoparticles: A next generation smart nanomaterials for pollution abatement and ecological sustainability -- Chapter 16. Smart nano-materials for bio-imaging applications:An overview -- Chapter 17. Biology of Earthworm in a World of Nano-materials: New Room, Challenges and, Future Perspectives -- Chapter 18. Bioethanol production from agricultural wastes with the aid of nanotechnology -- Chapter 19. Nanotechnology for sustainable bioenergy production.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(IX, 736 p. 1 illus.)
    Edition: 1st ed. 2022.
    ISBN: 9789811622250
    Series Statement: Environmental and Microbial Biotechnology
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Singapore : Springer Singapore | Singapore : Imprint: Springer
    Keywords: Plant biochemistry. ; Microbiology. ; Microbial ecology. ; Plant breeding. ; Molecular ecology.
    Description / Table of Contents: Chapter 1. Application of microbial biosurfactants in the food industry -- Chapter 2. Microbial biosurfactants for contamination of food processing -- Chapter 3. Antioxidant Biosurfactants -- Chapter 4. Classification and production of microbial surfactants -- Chapter 5. Microbial biosurfactants and their potential applications: an overview -- Chapter 6. Biodegradation of hydrophobic polycyclic aromatic hydrocarbons -- Chapter 7. Surfactin -a biosurfactant against breast cancer -- Chapter 8. Anti-cancer biosurfactants -- Chapter 9. Biosurfactant for oil-pollution remediation -- Chapter 10. Potential Applications of Anti-adhesive Biosurfactants -- Chapter 11. Applications of bio-surfactant for microbial bioenergy/value-added bio-metabolite recovery from waste activated sludge -- Chapter 12. Application of microbial biosurfactants in the pharmaceutical industry -- Chapter 13. Antibacterial Biosurfactants -- Chapter 14. Microbial biosurfactants as cleaning and washing agents.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VIII, 314 p. 66 illus., 32 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9789811566073
    Series Statement: Environmental and Microbial Biotechnology
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: Environmental engineering. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (300 pages)
    Edition: 1st ed.
    ISBN: 9780128219010
    DDC: 541.39
    Language: English
    Note: Intro -- Green Sustainable Process for Chemical and Environmental Engineering and Science: Green Inorganic Synthesis -- Copyright -- Contents -- Contributors -- Chapter 1: Microwave-assisted green synthesis of inorganic nanomaterials -- Description -- Key features -- 1. Introduction -- 2. Technical aspects of microwave technique -- 2.1. Principles and heating mechanism of microwave method -- 2.2. Green solvents for microwave reactions -- 2.3. Microwave versus conventional synthesis -- 2.4. Microwave instrumentation -- 2.5. Advantages and limitations -- 3. MW-assisted green synthesis of inorganic nanomaterials -- 3.1. Metallic nanostructured materials -- 3.2. Metal oxides nanostructured materials -- 3.3. Metal chalcogenides nanostructured materials -- 3.4. Quantum dot nanostructured materials -- 4. Conclusions and future aspects -- 4.1. Challenges and scope to further study -- References -- Chapter 2: Green synthesis of inorganic nanoparticles using microemulsion methods -- Description -- Key features -- 1. Introduction -- 2. Fundamental aspects of microemulsion synthesis -- 2.1. Microemulsion and types -- 2.2. Micelles, types, and formation mechanism -- 2.3. Hydrophilic-lipophilic balance number -- 2.4. Surfactants and types -- 2.5. Advantages and limitations of microemulsion synthesis of nanomaterials -- 3. Microemulsion-assisted green synthesis of inorganic nanostructured materials -- 3.1. General mechanism microemulsion method for nanomaterial synthesis -- 3.2. Preparation of metallic and bimetallic nanoparticles -- 3.3. Metal oxide synthesis by microemulsion -- 3.4. Synthesis of metal chalcogenide nanostructured materials -- 3.5. Synthesis of inorganic quantum dots -- 4. Conclusions, challenges, and scope to further study -- References -- Chapter 3: Synthesis of inorganic nanomaterials using microorganisms -- 1. Introduction. , 2. Green approach for synthesis of nanoparticles -- 3. General mechanisms of biosynthesis -- 4. Optimization of nanoparticles biosynthesis -- 4.1. Effect of the temperature -- 4.2. Effect of pH -- 4.3. Effect of metal precursor concentration -- 4.4. Effect of culture medium composition -- 4.5. Effect of biomass quantity and age -- 4.6. Synthesis time -- 5. Biosynthesis of metal oxide nanoparticles -- 5.1. Bacteria-mediated synthesis -- 5.2. Fungi-mediated synthesis -- 5.3. Yeast-mediated synthesis -- 5.4. Algae- and viruses-mediated synthesis -- 6. Biosynthesis of metal chalcogenide nanoparticles -- 7. Final considerations -- References -- Chapter 4: Challenge and perspectives for inorganic green synthesis pathways -- 1. Introduction -- 2. Synthesis methods -- 2.1. Physical synthesis -- 2.1.1. Advantages -- 2.1.2. Inconvenient -- 2.2. Chemical synthesis -- 2.2.1. Advantages -- 2.2.2. Inconvenient -- 2.3. Green synthesis of inorganic nanomaterials and application -- 3. Challenge and perspectives -- 4. Conclusion -- References -- Chapter 5: Synthesis of inorganic nanomaterials using carbohydrates -- 1. Introduction -- 1.1. Types of nanomaterials -- 1.2. Approaches for the synthesis of inorganic nanomaterials -- 1.3. Characterization of inorganic nanomaterials -- 1.4. What are carbohydrates? -- 1.4.1. Types of carbohydrates -- Monosaccharides -- Oligosaccharides -- Polysaccharides -- 2. Synthesis of inorganic nanomaterials using carbohydrates -- 2.1. Synthesis of metal nanomaterials using carbohydrates -- 2.2. Synthesis of metal oxide-based nanomaterials using carbohydrates -- 2.3. Synthesis of nanomaterials using polysaccharides extracted from fungi and plant -- 3. The advantages and disadvantages of inorganic nanomaterials -- 4. Conclusion and future scope -- References -- Chapter 6: Fundamentals for material and nanomaterial synthesis. , 1. Introduction -- 2. Fundamental synthesis for materials -- 2.1. Solid-state synthesis -- 2.2. Chemical vapor transport -- 2.3. Sol-gel process -- 2.4. Melt growth (MG) method -- 2.5. Chemical vapor deposition -- 2.6. Laser ablation methods -- 2.7. Sputtering method -- 2.8. Molecular beam epitaxy method -- 3. Fundamental synthesis for nanomaterials -- 3.1. Top-down and bottom-up approaches -- 3.1.1. Ball milling (BL) synthesis process -- 3.1.2. Electron beam lithography -- 3.1.3. Inert gas condensation synthesis method -- 3.1.4. Physical vapor deposition methods -- 3.1.5. Laser pyrolysis methods -- 3.2. Chemical synthesis methods -- 3.2.1. Sol-gel method -- 3.2.2. Chemical vapor deposition method -- 3.2.3. Hydrothermal synthesis -- 3.2.4. Polyol process -- 3.2.5. Microemulsion technique -- 3.2.6. Microwave-assisted (MA) synthesis -- 3.3. Bio-assisted (B-A) methods -- 4. Conclusion -- References -- Chapter 7: Bioinspired synthesis of inorganic nanomaterials -- 1. Introduction -- 1.1. Nanomaterials and current limitations -- 1.2. Bioinspired synthesis -- 2. General mechanism of interaction -- 3. Bioinspired synthesis of inorganic nanomaterials -- 3.1. Microorganisms-mediated synthesis -- 3.2. Plant-mediated synthesis -- 3.2.1. Root extract assisted synthesis -- 3.2.2. Leaves extract assisted synthesis -- 3.2.3. Shoot-mediated synthesis -- 3.3. Protein templated synthesis -- 3.4. DNA-templated synthesis -- 3.5. Butterfly wing scales-templated synthesis -- 4. Applications of bioinspired nanomaterials -- 5. Conclusions -- References -- Chapter 8: Polysaccharides for inorganic nanomaterials synthesis -- 1. Introduction -- 2. Polysaccharides -- 2.1. Types of polysaccharides -- 2.1.1. Cellulose -- 2.1.2. Starch -- 2.1.3. Chitin -- 2.1.4. Chitosan -- 2.1.5. Properties of polysaccharides for bioapplications -- 3. Nanomaterials -- 3.1. Types of nanomaterials. , 3.1.1. Organic nanomaterials -- Carbon nanotubes -- Graphene -- Fullerenes -- 3.1.2. Inorganic nanomaterials -- Magnetic nanoparticles -- Metal nanoparticles -- Metal oxide nanoparticles -- Luminescent inorganic nanoparticles -- 3.2. Health effects of nanomaterials -- 4. Polysaccharide-based nanomaterials -- 4.1. Cellulose nanomaterials -- 4.1.1. Preparation of cellulose nanomaterials -- 4.1.2. Structure of cellulose nanomaterials -- 4.2. Chitin nanomaterials -- 4.2.1. Preparation of chitin nanomaterials -- 4.2.2. Structure and properties of chitin nanomaterials -- 4.3. Starch nanomaterials -- 4.3.1. Preparation of starch nanomaterials -- 4.3.2. Structure and properties of starch nanomaterials -- 5. Preparation of polysaccharide-based inorganic nanomaterials -- 5.1. Bulk nanocomposites -- 5.2. Composite nanoparticles -- 6. Applications of polysaccharide-based inorganic nanomaterials -- 6.1. Biotechnological applications -- 6.1.1. Bioseparation -- 6.1.2. Biolabeling and biosensing -- 6.1.3. Antimicrobial applications -- 6.2. Biomedical applications -- 6.2.1. Drug delivery -- 6.2.2. Digital imaging -- 6.2.3. Cancer treatment -- 6.3. Agricultural applications -- 7. Characterization of polysaccharide-based nanomaterials -- 7.1. Spectroscopy -- 7.1.1. Infrared (IR) spectroscopy -- 7.1.2. Surface-enhanced Raman scattering (SERS) -- 7.1.3. UV-visible absorbance spectroscopy -- 7.2. Microscopy -- 7.2.1. Scanning electron microscopy (SEM) -- 7.2.2. Transmission electron microscopy (TEM) -- 7.3. X-ray methods -- 7.4. Thermal analysis -- 8. Future prospects -- 9. Concluding remarks -- References -- Chapter 9: Supercritical fluids for inorganic nanomaterials synthesis -- 1. Introduction -- 2. The supercritical fluid as a substitute technology -- 2.1. What is supercritical fluid? -- 2.2. Supercritical antisolvent precipitation. , 2.3. Supercritical-assisted atomization -- 2.4. Sol-gel drying method -- 3. Synthesis in supercritical fluids -- 3.1. Route of supercritical fluids containing nanomaterials synthesis -- 3.2. Sole supercritical fluid -- 3.3. Mixed supercritical fluid -- 4. Theory of the synthesis of supercritical fluids containing nanomaterials -- 4.1. Supercritical fluids working process -- 4.2. Origin of nanoparticles -- 4.3. The rapid expansion of supercritical solutions -- 5. Conclusion -- References -- Chapter 10: Green synthesized zinc oxide nanomaterials and its therapeutic applications -- 1. Introduction -- 2. Green synthesis -- 3. ZnO NPs characterization -- 4. ZnO NPs synthesis by plant extracts -- 5. ZnO NPs synthesis by bacteria and actinomycetes -- 6. ZnO NPs synthesis by algae -- 7. ZnO NPs synthesis by fungi -- 8. NPs synthesis by virus -- 9. ZnO NPs synthesis with alternative green sources -- 10. Therapeutic applications -- 11. Conclusions -- References -- Chapter 11: Sonochemical synthesis of inorganic nanomaterials -- 1. Background -- 2. Inorganic nanomaterials in sonochemical synthesis -- 3. Applications -- 4. Final comments -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: Organic compounds-Synthesis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (412 pages)
    Edition: 1st ed.
    ISBN: 9780128198490
    DDC: 547/.2
    Language: English
    Note: Intro -- Green Sustainable Process for Chemical and Environmental Engineering and Science: Organic Synthesis in Water and Supercriti... -- Copyright -- Contents -- Contributors -- Chapter 1: Polymer synthesis in water and supercritical water -- 1. Introduction -- 1.1. Water in industries -- 1.2. Supercritical fluids -- 1.3. Properties of water and supercritical water -- 2. Polymerization in water medium -- 2.1. Emulsion polymerization -- 2.2. Photoactivated polymerization -- 2.3. Dispersion polymerization -- 2.4. Controlled/``living´´ radical polymerization -- 2.5. Radical polymerization -- 2.6. Oxidative polymerization -- 2.7. Solution polymerization -- 2.8. Enzyme-catalyzed polymerization -- 3. Supercritical water in polymer technology -- 3.1. Supercritical water in lignocellulosic polymers -- 3.1.1. Cellulose -- 3.1.2. Hemicellulose -- 4. Conclusion -- Acknowledgment -- References -- Chapter 2: Ring-opening reactions in water -- 1. N-nucleophiles -- 1.1. Aliphatic and aromatic amines -- 1.1.1. Racemic synthesis of β-amino alcohols -- 1.1.2. Enantioselective synthesis of β-amino alcohols -- 1.2. Azidolysis -- 2. O-nucleophiles -- 3. S-nucleophile -- 4. C-nucleophiles -- 5. Se-nucleophile -- 6. H-nucleophiles -- References -- Chapter 3: Cycloaddition reactions in water -- 1. Introduction -- 2. ``In-water´´ cycloaddition reactions -- 2.1. [4+2] Cycloaddition (Diels-Alder) reactions -- 2.2. Hydrophobicity effect on rate enhancement in water -- 2.2.1. Structure facilitated hydrophobic effect -- 2.3. Hydrogen-bonding effect on rate enhancement -- 2.4. Endo- vs exo-selectivity in intermolecular D-A reactions -- 2.5. Inverse electron demand D-A reactions in water -- 2.6. Asymmetric Diels-Alder reactions in water -- 2.7. Application to the total synthesis of natural products -- 2.8. Intramolecular Diels-Alder reactions in water. , 2.9. Aqueous intramolecular D-A reaction in the total synthesis -- 2.10. [3+2] Cycloaddition reactions in water -- 2.11. [4+3] Cycloaddition reaction -- 2.12. [2+2+2] Cycloadditions -- 2.13. [5+2] Cycloadditions -- 3. Cycloaddition reactions ``on-water´´ -- 4. Concluding remarks -- Acknowledgments -- References -- Chapter 4: Hydrogenation reactions in water -- 1. Introduction -- 2. Types of hydrogenation -- 2.1. Catalytic hydrogenation -- 2.2. Transfer hydrogenation -- 2.3. Asymmetric hydrogenation -- 2.4. Asymmetric transfer hydrogenation -- 2.5. Electrocatalytic hydrogenation -- 2.6. Selective hydrogenation -- 2.6.1. Chemoselective hydrogenation -- 2.6.2. Diastereoselective hydrogenation -- 2.6.3. Regioselective hydrogenation -- 2.7. Other hydrogenation -- 3. Water as hydrogen donor -- 3.1. Synthesis of aliphatic compounds -- 3.2. Synthesis of aromatic compounds -- 3.3. Synthesis of carbonyl compounds -- 3.4. Synthesis of alcohols, ethers, sugars, nitro and nitril compounds -- 3.5. Synthesis of bio-oils, fossil fuel, and cellulose -- 4. Water as solvent -- 4.1. Synthesis of aliphatic compounds -- 4.2. Synthesis of aromatic compounds -- 4.3. Synthesis of carbonyl compounds -- 4.4. Synthesis of alcohols, ethers, sugars, nitro, and nitril compounds -- 5. Conclusion -- References -- Chapter 5: Magnetically separable nanocatalyzed synthesis of bioactive heterocycles in water -- 1. Introduction -- 2. Synthesis of nitrogen-containing heterocycles -- 2.1. Synthesis of N-substituted pyrroles -- 2.2. Synthesis of 1,4-dihydropyridines -- 2.3. Synthesis of hexahydroquinoline carboxylates -- 2.4. Synthesis of quinolines -- 2.5. Synthesis of acridine-1,8(2H,5H)-diones -- 2.6. Synthesis of benzo[d]imidazoles -- 2.7. Synthesis of imidazo[1,2-a]pyridines -- 2.8. Synthesis of quinoxalines -- 2.9. Synthesis of 1,2,3-triazoles. , 2.10. Synthesis of pyrimido[4,5-b]quinoline and indeno fused pyrido[2,3-d]pyrimidines -- 2.11. Synthesis of pyrido[2,3-d:6,5-d]dipyrimidines -- 2.12. Synthesis of spiropyrazolo pyrimidines -- 2.13. Synthesis of spiro[indoline-3,5-pyrido[2,3-d]pyrimidine] derivatives -- 2.14. Synthesis of 2-amino-tetrahydro-1H-spiro[indoline-3,4-quinoline] derivatives -- 2.15. Synthesis of spiro[indoline-3,2-quinoline] derivatives -- 3. Synthesis of oxygen-containing heterocycles -- 3.1. Synthesis of 4-methylcoumarins -- 3.2. Synthesis of 2-amino-3-cyano-4H-chromenes -- 3.3. Synthesis of 2-amino-4H-chromen-4-yl phosphonates -- 3.4. Synthesis of tetrahydro-1H-xanthen-1-one -- 3.5. Synthesis of pyran annulated scaffolds -- 4. Synthesis of nitrogen as well as oxygen-containing heterocycles -- 4.1. Synthesis of furo[3,4-b]quinoline derivatives -- 4.2. Synthesis of spiro[furo[3,4:5,6]pyrido[2,3-d]pyrimidine-5,3-indoline] derivatives -- 4.3. Synthesis of spirooxindole derivatives -- 4.4. Synthesis of pyrrole fused heterocycles -- 4.5. Synthesis of pyrano[2,3-c]pyrazoles -- 4.6. Synthesis of tetrahydropyrano[3,2-c]quinolin-5-ones -- 4.7. Synthesis of chromeno[1,6]naphthyridines -- 4.8. Synthesis of 1H-naphtho[1,2-e][1,3]oxazine derivatives -- 5. Conclusions -- Acknowledgments -- References -- Chapter 6: Stereoselective organic synthesis in water: Organocatalysis by proline and its derivatives -- 1. Introduction -- 2. Reactions in homogeneous solution or micellar media -- 2.1. Aldol reaction -- 2.2. Knoevenagel condensation -- 2.3. Michael addition -- 2.4. Mannich reaction -- 2.5. Diels-Alder reaction -- 2.6. α-Aminoxylation -- 2.7. Asymmetric hydrogenation -- 3. Reactions catalyzed by solid-supported proline derivatives -- 3.1. Reactions catalyzed by silica-supported proline species -- 3.2. Reactions catalyzed by polymer-supported proline species -- 4. Summary and outlook. , References -- Chapter 7: CN formation reactions in water -- 1. Introduction -- 2. Homogeneous catalysts -- 3. Heterogeneous catalysts -- 4. Conclusions -- Acknowledgments -- References -- Chapter 8: Regioselective synthesis in water -- 1. Introduction -- 2. Metal catalyzed regioselective organic synthesis in water -- 3. Regioselective organo-catalytic reactions in aqueous media -- 4. A catalyst-free regioselective reaction in aqueous media -- References -- Chapter 9: Aqueous polymerizations -- 1. Introduction -- 2. Polymerization: Fundamentals and methods -- 2.1. Fundamentals of polymerization -- 2.2. Methods of polymerization: Solution polymerization -- 2.3. Methods of polymerization: Dispersion polymerization and polycondensation -- 2.4. Methods of polymerization: Suspension polymerizations and polycondensations -- 2.5. Emulsion polymerization and polycondensation -- 3. Free-radical polymerizations -- 4. Ionic polymerizations -- 4.1. Cationic polymerization -- 4.2. Anionic polymerization -- 5. Controlled radical polymerizations -- 5.1. Reversible addition-fragmentation chain-transfer polymerizations -- 5.2. Nitroxide-mediated polymerization -- 6. Metal-mediated polymerizations -- 6.1. Atom transfer radical polymerization -- 6.2. Ring-opening metathesis polymerization -- 7. Polycondensation -- 8. Conclusions -- Acknowledgments -- References -- Chapter 10: Microwave- and ultrasound-assisted heterocyclics synthesis in aqueous media -- 1. Introduction -- 2. Microwave-assisted heterocyclics synthesis in water -- 3. Ultrasound-assisted heterocyclics synthesis in water -- 4. Conclusion and future prospects -- References -- Chapter 11: Recent advances on carbon-carbon bond forming reactions in water -- 1. Introduction -- 2. Carbon-carbon coupling reactions -- 3. Couplings in water are biphasic -- 4. Heterogeneous catalysis. , 5. Factors affecting CC coupling reactions in water -- 5.1. Catalyst -- 5.2. Bimetallic catalysts -- 5.3. Base and concentration effect -- 5.4. Light water/heavy water -- 5.5. Energy source -- 5.6. Additives and transfer agents -- 6. Specific CC coupling reactions -- 6.1. Mizoroki-Heck reaction -- 6.2. Hiyama reaction -- 6.3. Suzuki-Miyaura reaction -- 6.4. Sonogashira-Hagihara reaction -- 6.5. Stille reaction -- 6.6. Negishi reaction -- 7. Applications in synthesis -- 7.1. Derivatization of biomolecules -- 7.2. Bioactive molecules -- 8. Conclusions -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: Nanotechnology-Health aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (446 pages)
    Edition: 1st ed.
    ISBN: 9780323951722
    DDC: 615.1
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: Green chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (426 pages)
    Edition: 1st ed.
    ISBN: 9780323998178
    DDC: 621.312424
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Hauppauge :Nova Science Publishers, Incorporated,
    Keywords: Polymerization. ; Polymers. ; Electronic books.
    Description / Table of Contents: It is well known that polymeric and composite materials are finding various applications in some critical areas of human endeavors, such as medicine, medical appliances, energy and the environment. This edition will, hopefully, evoke interest from scientists working in the fields of chemistry, polymer chemistry, electrochemistry and material science. Its applications and uses include: polymer electrolyte membrane fuel cells, sensors, actuators, coatings, electrochromic and electroluminescent materials, magnetic polymers, organo-metallic polymers, tissue engineering, methods of the immobilization of biological molecules, and dental and orthopedic applications. This edition is a highly valuable source for scientists, researchers, upper-level undergraduate and graduate students, as well as college and university professors, because it provides the most up-to-date reference work summarizing the pioneering research work in the field of polymeric and composite materials.
    Type of Medium: Online Resource
    Pages: 1 online resource (372 pages)
    Edition: 1st ed.
    ISBN: 9781629480619
    Series Statement: Polymer Science and Technology
    DDC: 620.192
    Language: English
    Note: Intro -- ADVANCED FUNCTIONAL POLYMERS AND COMPOSITES: MATERIALS, DEVICES AND ALLIED APPLICATIONS. VOLUME 1 -- ADVANCED FUNCTIONAL POLYMERS AND COMPOSITES: MATERIALS, DEVICES AND ALLIED APPLICATIONS. VOLUME 1 -- Library of Congress Cataloging-in-Publication Data -- Dedication -- Contents -- Preface -- Contributors -- About the Editor -- Acknowledgments -- Chapter 1: Advances in Membranes for High Temperature Polymer Electrolyte Membrane Fuel Cells -- Abstract -- Abbreviations -- 1. Introduction -- 2. Proton Exchange Membrane Fuel Cells (PEMFCS) -- 2.1. Role of Proton Conducting Membrane in Proton Exchange Membrane Fuel Cells -- 2.2. Requirement for Proton Conducting Membrane for Proton Exchange Membrane Fuel Cells -- 2.3. Current Status of Perfluorinated Sulfonic Acid and Alternative Proton Conducting Membranes -- 2.4. Proton Transport in Sulfonic Acid Membranes -- 2.5. Challenges Facing Sulfonic Acid Membranes in Proton Exchange Membrane Fuel Cells -- 3. High Temperature Polymer Electrolyte -- Membrane Fuel Cell -- 3.1. Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells -- 3.2. Membranes Obtained by Modification with Hygroscopic Inorganic Fillers -- 3.3. Membranes Obtained by Modification with Solid Proton Conductors -- 3.4. Membranes Obtained by Modification with Less Volatile Proton Assisting Solvent -- 3.4.1. Doping with Heterocyclic Solvents -- 3.4.2. Doping with Phosphoric Acid -- 3.4.3. Radiation Grafted and Acid Doped Membranes -- 3.5. Disadvantages of Using Phosphoric Acid Composite Membranes for High Temperature Proton Exchange Membrane Fuel Cell Applications -- 3.6. Alternative Membranes Based on Benzimidazole Derivatives -- 3.7. Alternative Benzimidazole Polymers Doped with Heteropoly Acids -- 3.8. Membrane Impregnated with Ionic Liquids -- 3.9. Summary of Membranes Obtained by Modification of Sulfonic. , Acid Ionomers -- 4. Proton Conduction Mechanism in High Temperature Proton Conducting Membrane -- Conclusion and Prospectives -- Acknowledgments -- References -- Chapter 2: Surface-Confined Ruthenium and Osmium Polypyridyl Complexes as Electrochromic Materials -- Abstract -- Abbreviations -- 1. Introduction -- 1.1. Electrochromic Windows, Displays and Mirrors -- 1.2. Classes of Electrochromic Materials -- 1.3. Metal Complexes As Electrochromic Materials -- 1.3.1. Ruthenium (II) Complexes As Electrochromic Materials -- (I). Optical Behavior of Ruthenium Complexes -- (II). Redox Behavior of Ruthenium Complexes -- (III). Role of Spacers in Dinuclear Ruthenium Complexes -- 1.3.2. Osmium (II) Complexes As Electrochromic Materials -- 1.3.3. Other Metal Complexes As Electrochromic Materials -- 1.4. Substrates Used for Electrochromic Material -- 1.5. Modification of Substrates -- 2. Surface-Confined Ruthenium Complexes -- As Electrochromic Materials -- 2.1. Chemically Adsorbed Ruthenium Complexes -- 2.2. Physically Adsorbed Ruthenium Complexes -- 3. Surface-Confined Osmium Complexes -- As Electrochromic Materials -- 3.1. Osmium Complex-Based Monolayer -- 3.2. Osmium Complex-Based Multilayer -- 4. Surface-Confined Hetero-Metallic -- Complexes As Electrochromic Materials -- 4.1. Coordinative Supramolecular Assembly As Thin Films -- Conclusion -- Acknowledgments -- References -- Chapter 3: Magnetic Polymeric Nanocomposite Materials: Basic Principles Preparations and Microwave Absorption Application -- 1Department of Materials Science, School of Applied Physics, Faculty of Science -- and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia -- 2Institute of Hydrogen Economy, Universiti Teknologi Malaysia, -- Jalan Semarak, Kuala Lumpur, Malaysia -- Abstract -- Abbreviations -- 1. Introduction -- 2. Historical Background. , 3. Interaction Mechanisms of Electromagnetic Wave -- with Materials -- 3.1. Interaction Mechanism with Conductor Materials -- 3.2. Interaction Mechanism with Dielectric Materials -- 3.3. Interaction Mechanism with Magnetic Materials -- 4. The Reason of Using Microwave Absorbing Materials -- 5. The Criteria for Choosing the Filler and the -- Importance of Matching Conditions for Ideal -- Microwave Absorbing Materials -- 5.1. Metal-Backed Single Layer Absorber Mode -- 5.2. Stand-Alone Absorbing Material Model -- 6. Types and Properties of Polymers -- 7. Magnetic Polymer Nanocomposites -- 7.1. Nanomaterials -- 7.2. Magnetic Polymer Nanocomposites' Properties -- 7.3. Magnetic Polymer Nanocomposites' Applications -- 7.4. The Importance of Dispersion in Magnetic Polymer Nanocomposites -- 8. Preparation and Processing of -- Magnetic Polymer Nanocomposites -- 8.1. In-Situ Oxidative Polymerization Method (with Sonication) -- 8.2. One-Step Chemical Method -- 8.3. Surface-Initiated Polymerization Method -- 8.4. Microemulsion Chemical Oxidative Polymerization Method -- 8.5. Reverse Micelle Microemulsion Method -- 8.6. In-Situ Inverse Microemulsion Polymerization -- 8.7. Irradiation Induced Inverse Emulsion Polymerization -- 8.8. Miniemulsion Polymerization -- 8.9. Mechanical Melt Blending Method -- 8.10. Melt Processing Method Using Ultrasonic Bath -- 8.11. Template Free Method -- 8.12. Solution Casting Method -- 8.13. Sonochemical Method -- 8.14. Electrochemical Synthesis -- 9. Electromagnetic Wave Absorption Application of Magnetic Polymer Nanocomposites -- 9.1. The Crucial Role of Magnetic Nanoparticles and Sample Thickness in the Determination of the Microwave Absorption Application -- 9.2. Effect of Magnetic Filler Size on the Microwave Absorption and/or Electromagnetic Interference Shielding Application. , 9.3. Broadening the Microwave Absorption Range for Low and High Frequency Applications Using Binary Magnetic Nanofillers -- 9.4. The Enhancement of the Microwave Absorption for Electromagnetic Interference Shielding Application Using Magnetic and Dielectric Nanofillers -- Conclusion -- References -- Chapter 4: Polyetheramide-Birth of a New Coating Material -- Abstract -- Abbreviations -- 1. Introduction -- 2. Raw Materials and Test Methods -- 3. Linseed Oil Based Polyetheramides[LPEtA] -- 4. Soybean Oil Based Polyetheramides (SPEtA) -- 5. Albizia Lebbek Benth Oil Based PEtA (ABOPEtA) -- 6. Jatropha Seed Oil Based PEtA(JPEtA) -- 6. Olive Oil Based PEtA (OPEtA) -- Conclusion -- Acknowledgments -- References -- [1] Sørensen, P. A., Kiil,S., Dam-Johansen, K. & -- Weinell, C. E. (2009). Anticorrosive coatings: a review, J. Coat. Technol. Res., 6(2), 135-176. -- Chapter 5: Advanced Functional Polymers and Composite Materials and Their Role in Electroluminescent Applications -- Abstract -- Introduction & -- Scope of the Work -- 1. Light Emitting Diodes (LEDs), Characteristics and Categories -- (a) LED- Device Configuration -- (b) Recent Developments in The LED's Technology -- In-organic Light Emitting Diode -- Materials & -- Characteristics -- 3-I. Luminescence and Scintillation from the Inorganic Phosphor Materials -- An Ideal Luminescencent Material's Characteristics -- 3-II. Scintillation -- 3-III. Inorganic Electroluminescent Materials & -- Devices -- Organic Light Emitting Diodes Devices (OELDs) -- 4- (i). OLED Characteristics -- 4-(ii). OLED- Device Configuration & -- Working Principle -- 4-(iii). General Electroluminescent Materials Used for OLED Devices -- 4-(iv). OLED Device Fabrication -- 4-(v). OLED- Electro-Optical (EO) Properties -- 4-(vi). Quantum Efficiency of OLED Devices -- The Classifications of OLED types. , 4-I. An Overview of Historical Background about Polymeric OLEDs -- (P-OLEDs) -- 4-II. Polymeric OLEDs (P-OLEDs) as Electroluminescent Devices -- 4- III. Polymeric OLEDs (P-OLEDs) Employed in Various Device's Applications -- Conclusion -- Acknowledgments -- References -- [1] Akcelrud, L. Prog. Polym. Sci. 28 (2003). 875-962. -- Chapter 6: Poly(Methacrylic Acid) and Poly (Itaconic Acid) Applications as pH-Sensitive Actuators -- Abstract -- Abbreviations -- 1. Introduction -- 2. Methacrylic Acid and Itaconic Acid -Basic Properties -- 2. Poly(methacrylic acid) and Poly(Itaconic Acid) pH-sensitive Polymers -- 2.1. Linear Systems -- 2.2. Hydrogels -- 2.3. Amphiphillic Block and Graft Copolymers (Micelles) -- 2.4. Modified Surfaces and Membranes -- Conclusion -- Acknowledgments -- References -- Chapter 7: Cell Scaffolds and Fabrication Technologies for Tissue Engineering -- Abstract -- Abbreviations -- 1. Introduction -- 2. Cell Based-Therapies for Tissue Engineering -- 3. Scaffolds Preparation Technologies -- 3.1. Nanofibrous -- 3.2. Freeze-Drying -- 3.3. Fiber Bonding -- 3.4. Phase Separation -- 3.5. Gas Foaming -- 3.6. Rapid Prototyping -- 4. Special Applications in Tissue Ingineering -- 4.1. Injectable Matrices for Cell Therapy -- 4.2. Bioceramic Matrices for Cell Therapy -- Conclusion -- Acknowledgments -- References -- Chapter 8: Immobilization of Lipase by Physical Adsorption on Selective Polymers -- Abstract -- Abbreviations -- 1. Introduction -- 2. The Mechanism of Action of Lipases -- 3. Properties of Enzymes Influenced by Immobilization -- 4. Properties of Matrices for Immobilization -- 5. Methods for Enzyme Immobilization -- 5.1. Physical Adsorption -- Advantages and Disadvantages of Enzymes Immobilization Using the Adsorption Technique -- 5.2. Ionic Binding -- 5.3. Covalent Binding. , Advantages and Disadvantages of Enzymes Immobilization Using the Covalent Technique.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: Environmental engineering. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (302 pages)
    Edition: 1st ed.
    ISBN: 9780128218976
    DDC: 543
    Language: English
    Note: Intro -- Green Sustainable Process for Chemical and Environmental Engineering and Science: Analytical Techniques for Environmental a... -- Copyright -- Contents -- Contributors -- Chapter 1: Conventional and advanced techniques of wastewater monitoring and treatment -- 1. Introduction -- 2. Water pollutants: Origin and consequences -- 3. Wastewater analysis -- 3.1. Lab-based analytical methods -- 3.2. Field monitoring techniques -- 3.2.1. Biosensors -- Biosensors for detection of organic contaminants in wastewater -- Biosensors for detection of inorganic contaminants in water -- Biosensors for detection of microorganisms in water -- 3.2.2. Nanoparticle-assisted sensing platform -- 3.2.3. Paper-based microfluidics sensors -- 3.2.4. Soft sensors -- 3.3. Wireless sensor networks -- 4. Wastewater treatment -- 4.1. Conventional wastewater treatment methods -- 4.1.1. Primary treatment -- 4.1.2. Secondary treatment -- Aerobic treatment -- Anaerobic treatment -- Activated sludge process -- Biological filters -- Vermifiltration -- Rotating biological contractors -- Phytoremediation -- Microbial fuel cells -- 4.1.3. Tertiary treatment -- 4.2. Advanced wastewater treatment methods -- 4.2.1. Membrane filtration -- 4.2.2. Advanced oxidation processes -- 4.2.3. UV irradiation -- 4.2.4. Other advanced methods -- 4.3. Commercialized wastewater treatments -- 5. Future perspectives -- References -- Chapter 2: UV-vis spectrophotometry for environmental and industrial analysis -- 1. Introduction -- 2. The electromagnetic spectrum -- 2.1. Electronic photophysical process -- 3. Limitations of Beer-Lambert Law -- 4. Importance of UV-vis spectroscopy for analysis -- 4.1. Quantitative analysis -- 4.2. Qualitative analysis -- 4.3. UV-vis spectrophotometry for environmental analysis -- 5. Water analysis -- 6. Polymer analysis -- 7. Microcarbon analysis -- 8. Dye analysis. , 8.1. Measurement of change in coloration -- 8.2. Removal of metal salts -- 8.3. Regulations in environmental control -- 8.4. Wastewater fingerprinting -- 8.5. Colored ink -- 8.6. UV-vis spectrophotometry for industrial analysis -- 8.6.1. Presence of colorants -- 8.6.2. Removal of colorants -- 8.7. Presence of organic content -- 8.8. Presence of natural products -- 8.9. Petrochemical industry -- 8.10. Waste management -- 9. Conclusion -- References -- Chapter 3: Chemical oxygen demand and biochemical oxygen demand -- 1. Introduction -- 2. Redox chemistry in water -- 3. Oxygen demand [1, 2] -- 4. Biological oxygen demand -- 5. Analysis of biochemical oxygen demand -- 5.1. Standard method -- 5.1.1. Winkler's method [6] -- 5.2. Technological advancement in standard methods -- 5.3. BOD methods for rapid determination of results -- 6. Chemical oxygen demand (COD) -- 6.1. Chemical reactions involved in COD determination [16] -- 6.2. Modification of conventional COD method -- 6.3. Mercury free methods -- 6.4. Electrochemical and photocatalytic methods (lesser chemical use) -- 7. Conclusion -- References -- Chapter 4: Soil and sediment analysis -- 1. Introduction -- 2. Methods for analysis of organic compounds -- 2.1. Pharmaceuticals -- 2.2. Phenols-alkylphenols and bisphenol A -- 2.3. Polycyclic aromatic hydrocarbons -- 2.4. Phthalates -- 2.5. Organometallic and organometalloid compounds -- 3. Microplastics -- 4. Quality assurance -- Funding -- References -- Chapter 5: Liquid chromatography-mass spectrometry techniques for environmental analysis -- 1. Introduction -- 2. Advances in extraction techniques of environmental samples for LC-MS -- 2.1. Microextraction techniques -- 2.2. Extraction techniques involving nanomaterials -- 2.3. Extraction techniques involving ionic liquids -- 3. Advances in liquid chromatography instrumentation. , 4. Advances in mass spectrometry detection -- 5. Applications of LC/MS for environmental analysis -- 6. Conclusions -- References -- Chapter 6: Green analytical chemistry for food industries -- 1. Introduction -- 2. Analytical detection -- 2.1. Qualitative methods -- 2.2. Quantitative methods -- 3. Emerging extraction technologies -- 3.1. Supercritical fluid extraction -- 3.2. Pressurized liquid extraction -- 3.3. Microwave-assisted extraction -- 3.4. Ultrasound-assisted extraction -- 4. Miniaturization of online emerging extraction techniques with analytical detection: Current trends in the use of SFE a ... -- 4.1. Sample preparation: Extraction vessel packaging -- 4.2. Extraction mode -- 4.2.1. Selection of the mobile phase -- 4.3. Separation and detection of analytes -- 5. Conclusion -- References -- Chapter 7: Immunoassays applications -- 1. Introduction -- 2. Conventional vs microscale immunoassay sensors -- 3. Substrates -- 3.1. Silicon -- 3.2. Glass -- 3.3. Polymers -- 3.4. Paper -- 3.5. Hybrid -- 4. Fluid transport mechanisms -- 4.1. Active -- 4.2. Passive -- 5. Detection methodologies -- 5.1. Colorimetric -- 5.2. Fluorescence -- 5.3. Surface plasmon resonance -- 5.4. Electrochemical -- 5.5. Mechanical -- 6. Conclusions and outlook -- References -- Chapter 8: High-performance liquid chromatographic techniques for determination of organophosphate pesticides in complex matr -- 1. Introduction -- 2. Environmental fate of pesticides -- 3. Analytical methods used for pesticides determination -- 4. High-performance liquid chromatography -- 4.1. Types of HPLC -- 4.1.1. Normal-phase HPLC -- 4.1.2. Reverse-phase HPLC -- 4.2. HPLC column -- 4.3. Mode of elution -- 4.3.1. Isocratic HPLC -- 4.3.2. Gradient HPLC -- 4.4. Detectors used for the analysis of organophosphate pesticides -- 5. Sample preparation for HPLC analysis of organophosphate pesticides. , 6. Detection and quantification of organophosphate pesticides from complex matrices using high-performance liquid chromat ... -- References -- Chapter 9: Application of the GC/MS technique in environmental analytics: Case of the essential oils -- 1. Introduction -- 2. GC/MS as a modern technique for analysis of essential oils -- 3. Practical application of the polar column in the analysis of essential oils -- 4. Conclusion -- References -- Chapter 10: Remote sensing for environmental analysis: Basic concepts and setup -- 1. Introduction -- 2. Practical examples -- 2.1. Improving environmental assessments through remote sensing -- 3. Key concepts to/in remote sensing -- 4. Historical background of remote sensing -- 4.1. Historical beginning -- 4.2. Remote sensing to environment applications -- 4.2.1. Hyperspectral imaging -- 4.2.2. Field spectrometry -- 4.2.3. Light detection and ranging (LiDAR) -- 5. Remote sensing sensors -- 5.1. Imaging sensors -- 5.2. Non-imaging sensors -- 6. Quality assurance and quality control (QA/QC) in environmental monitoring by remote sensing -- 7. Perspectives and conclusion -- References -- Chapter 11: Materials science and lab-on-a-chip for environmental and industrial analysis -- 1. Introduction -- 2. Lab-on-a-chip concept and components -- 3. Materials science on LOC technology -- 4. Environmental analysis and pollutant monitoring -- 5. Autonomous LOC prototype -- 6. Challenges and future prospects of LOC technology -- 7. Conclusion -- References -- Chapter 12: Destructive and nondestructive techniques of analyses of biofuel characterization and thermal valorization -- 1. Introduction -- 2. Materials preparation -- 2.1. Thermal densification processes -- 2.2. Mechanical densification processes -- 3. Destructive analyses for materials characterization -- 3.1. Generalities on destructive methods. , 3.2. Destructive methods in solid biofuel characterization -- 3.2.1. Thermogravimetry analysis (ATG) -- 3.2.2. High heating value determination -- 3.2.3. Ultimate analysis -- 4. Nondestructive methods for material characterization -- 4.1. Generalities -- 4.2. Nondestructive methods in solid biofuel characterization -- 4.2.1. Inductively coupled plasma atomic emission spectroscopy technique -- 4.2.2. Gaseous emission analysis using TESTO equipment -- 4.2.3. Particulate matter (PM) measurements -- 4.2.4. Bottom ash characterization and measurements -- References -- Chapter 13: Application of nanoparticles as a chemical sensor for analysis of environmental samples -- 1. Introduction -- 2. Synthesis of nanoparticles (NPs) -- 2.1. Platinum nanoparticles (PtNPs) -- 2.2. Gold nanoparticles (AuNPs) -- 2.3. Silver nanoparticles (AgNPs) -- 2.4. Copper nanoparticles (CuNPs) -- 2.5. Silica nanoparticles (SiNPs) -- 2.6. Magnetic nanoparticles (MNPs) -- 2.7. Carbon nanotubes (CNTs) -- 2.8. Graphene quantum dots (GQDs) -- 3. Characterization of nanoparticles -- 4. Properties of nanoparticles -- 4.1. Surface plasmon resonance (SPR) and color of NPs -- 4.2. Surface area -- 4.3. Magnetic properties -- 4.4. Electronic properties -- 5. Different class of chemical substances -- 5.1. Heavy metals -- 5.1.1. Essential metals -- 5.1.2. Toxic metals -- 5.2. Pesticides and fungicides -- 5.3. Aromatic and VOC's compounds -- 5.4. Surfactants -- 5.5. Other chemical substances -- 6. Analytical techniques for detection of chemical substance in environmental samples -- 6.1. Colorimetric sensing -- 6.2. Fluorescence sensing -- 6.3. Electrochemical sensing -- 6.4. Surface-enhanced Raman spectroscopic (SERS) sensing -- 7. Conclusions -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...