GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Botanical chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (318 pages)
    Edition: 1st ed.
    ISBN: 9789811566073
    Series Statement: Environmental and Microbial Biotechnology Series
    DDC: 579
    Language: English
    Note: Intro -- Preface -- Contents -- 1: Application of Microbial Biosurfactants in the Food Industry -- 1.1 Surfactants in the Food Industry -- 1.1.1 Food Additives -- 1.1.2 Biosurfactants as Food Preservatives -- 1.1.2.1 Emulsifying Agents -- 1.1.2.2 Antibiofilm Agents -- 1.1.2.3 Antimicrobial Agents -- 1.1.2.4 Antioxidant Agents -- 1.1.3 Industrial Prospects -- References -- 2: Microbial Biosurfactants for Contamination of Food Processing -- 2.1 Introduction -- 2.1.1 Food Contamination -- 2.1.2 Contamination in Food Processing -- 2.2 Microbial Biosurfactants Use in Food Processing -- 2.2.1 Glycolipids -- 2.2.2 Lipopeptides -- 2.3 Application of Microbial Surfactants in Food Processing -- 2.3.1 Biofilm Control -- 2.3.2 Food Preservatives -- 2.4 Concluding Remarks -- References -- 3: Antioxidant Biosurfactants -- 3.1 Introduction -- 3.2 Sources of Biosurfactants -- 3.2.1 Plant-Based Biosurfactants -- 3.2.1.1 Saponins -- Structure, Properties, and Types of Saponins -- Saponins as a Biosurfactants -- 3.2.2 Microbe-Based Biosurfactants -- 3.2.2.1 Types of Microbial Surfactants -- Glycolipids -- Rhamnolipids -- Sophorolipids -- Trehalolipids -- Succinoyl Trehalolipids -- Cellobiose Lipids -- Mannosylerythritol Lipids -- Xylolipids -- Mannose Lipids -- Lipopeptides or Lipoprotein -- Bacillus-Related Lipopeptides -- Surfactin -- Fengycin -- Iturin -- Kurstakins -- Lichenysins -- Pseudomonas-Related Lipopeptides -- Actinomycetes-Related lipopeptides -- Fungal-Related Lipopeptides -- Phospholipids, Fatty Acids (Mycolic Acids), and Neutral Lipids -- Polymeric Surfactants -- Particulate Surfactants -- 3.3 Factors Affecting Biosurfactant Production -- 3.3.1 pH and Temperature -- 3.3.2 Aeration and Agitation -- 3.3.3 Effect of Salt Salinity -- 3.3.4 Optimization of Cultivation Medium -- 3.3.4.1 Effect of Carbon Source -- 3.3.4.2 Effect of Nitrogen Source. , 3.3.4.3 Effect of Carbon to Nitrogen (C/N) Ratio -- 3.4 Screening of Microorganisms for Biosurfactant Production -- 3.4.1 Oil Spreading Assay -- 3.4.2 Drop Collapse Assay -- 3.4.3 Blood Agar Method/Hemolysis Assay -- 3.4.4 Hydrocarbon Overlay Agar -- 3.4.5 Bacterial Adhesion to Hydrocarbon (BATH) Assay -- 3.4.6 CTAB Agar Plate Method/Blue Agar Assay -- 3.4.7 Phenol: Sulfuric Acid Method -- 3.4.8 Microplate Assay -- 3.4.9 Penetration Assay -- 3.4.10 Surface/Interface Activity -- 3.4.11 Emulsification Activity -- 3.5 Antioxidant Properties of Biosurfactant -- 3.6 Conclusion -- References -- 4: Classification and Production of Microbial Surfactants -- 4.1 Introduction -- 4.1.1 Global Biosurfactant Market -- 4.2 Types of Biosurfactants -- 4.2.1 Glycolipids -- 4.2.1.1 Rhamnolipids -- 4.2.1.2 Sophorolipids -- 4.2.1.3 Trehalolipids -- 4.2.2 Lipoproteins and Lipopeptides -- 4.2.3 Fatty Acids -- 4.2.4 Phospholipids -- 4.2.5 Polymeric Biosurfactants -- 4.3 Factors Influencing Biosurfactant Productivity -- 4.3.1 Nutritional Factors -- 4.3.1.1 Carbon Source -- 4.3.1.2 Low-Cost and Waste Substrates -- 4.3.1.3 Nitrogen Source -- 4.3.1.4 Minerals -- 4.3.2 Environmental Factors -- 4.3.3 Cultivation Strategy -- 4.3.3.1 Solid-State Fermentation (SSF) -- 4.3.3.2 Submerged Fermentations (SmF) -- References -- 5: Microbial Biosurfactants and Their Potential Applications: An Overview -- 5.1 Introduction -- 5.2 Classes of Biosurfactants -- 5.2.1 Glycolipids -- 5.2.2 Lipopolysaccharides -- 5.2.3 Lipopeptides and Lipoproteins -- 5.2.4 Phospholipids -- 5.2.5 Fatty Acids -- 5.3 Microbial Production of Biosurfactants -- 5.4 Genes Involved in the Production of Microbial Biosurfactants -- 5.5 Applications -- 5.5.1 In Petroleum Industry -- 5.5.1.1 Mechanism of MEOR -- 5.5.2 Biosurfactant-Mediated Bioremediation -- 5.5.3 In Food Industry -- 5.5.4 In Agriculture. , 5.5.5 In Cosmetics -- 5.5.6 Biosurfactant in Nanotechnology -- 5.5.7 Biosurfactants as Drug Delivery Agents -- 5.5.8 Antimicrobial Activity of Biosurfactants -- 5.5.9 Biosurfactant as Anti-Adhesive Agent -- 5.5.10 In Fabric Washing -- 5.6 Conclusions -- References -- 6: Biodegradation of Hydrophobic Polycyclic Aromatic Hydrocarbons -- 6.1 Introduction -- 6.2 Health Related to PAHs -- 6.2.1 Consequences of Consistent of PAH Exposure by Human -- 6.2.2 Problems Associated with PAHs Via Cytochrome P450 -- 6.3 Biodegradation of PAHs -- 6.3.1 Challenges of Limited Aqueous Solubility in Water -- 6.3.2 Biodegradation Pathway of PAHs -- 6.3.2.1 Naphthalene -- 6.3.2.2 Pyrene -- 6.3.2.3 Fluoranthene -- 6.4 Biosurfactants -- 6.4.1 Biosurfactants -- 6.4.1.1 Glycolipid -- Rhamnolipids -- Cellobiose Lipids -- Sophorolipids -- Trehalolipids -- Mannosylerythritol Lipid -- 6.4.1.2 Lipopeptides -- 6.4.1.3 Phospholipids -- 6.4.2 Polymeric Biosurfactants -- 6.5 Enhanced Biodegradation of PAHs by Biosurfactant -- 6.5.1 Biodegradation in Micelles -- 6.5.2 Biosurfactant Acting as Bioemulsifier -- 6.6 Conclusions -- References -- 7: Surfactin: A Biosurfactant Against Breast Cancer -- 7.1 Introduction -- 7.2 Biosurfactants and Its Types -- 7.2.1 Glycolipids -- 7.2.1.1 Rhamnolipids -- 7.2.1.2 Sophorolipids -- 7.2.1.3 Trehalolipids -- 7.2.2 Lipopeptides -- 7.2.3 Fatty Acids -- 7.2.4 Phospholipids -- 7.2.5 Polymeric Biosurfactant -- 7.3 Surfactin: Structure, Membrane Interaction, Biosynthesis, and Regulation -- 7.3.1 Structure -- 7.3.2 Membrane Interaction -- 7.3.3 Biosynthesis -- 7.3.4 Regulation -- 7.4 Surfactin and Breast Cancer -- 7.5 Conclusion -- References -- 8: Anti-Cancer Biosurfactants -- 8.1 Introduction -- 8.2 Biosurfactants Classification and Structure -- 8.2.1 Mannosylerythritol Lipids (MELs) -- 8.2.2 Succinoyl Trehalose Lipids (STLs) -- 8.2.3 Sophorolipids. , 8.2.4 Rhamnolipids (RLs) -- 8.2.5 Myrmekiosides -- 8.2.6 Cyclic Lipopeptides (CLPs) -- 8.2.6.1 Amphisin, Tolaasin, and Syringomycin CLPs -- 8.2.6.2 Iturin and fengycin CLPs -- 8.2.6.3 Surfactin CLP -- 8.2.7 Rakicidns and Apratoxins -- 8.2.8 Serrawettins -- 8.2.9 Monoolein -- 8.2.10 Fellutamides -- 8.3 Biosurfactants Production -- 8.3.1 Factors Involved in Biosurfactants Production -- 8.3.1.1 Source of Carbon -- 8.3.1.2 Source of Nitrogen -- 8.3.1.3 Effect of Ions -- 8.3.1.4 Physical Factors -- 8.4 Anti-Cancer Activity of Biosurfactants -- 8.4.1 Breast Cancer -- 8.4.2 Lung Cancer -- 8.4.3 Leukemia -- 8.4.4 Melanoma -- 8.4.5 Colon Cancer -- 8.5 Biosurfactants as Drug Delivery System (DDS) -- 8.5.1 Liposomes -- 8.5.2 Niosomes -- 8.5.3 Nanoparticles -- 8.6 Conclusions and Future Challenges -- References -- 9: Biosurfactants for Oil Pollution Remediation -- 9.1 Introduction -- 9.2 Oil Pollution and Its Remediation -- 9.2.1 Oil Pollution -- 9.2.2 Oil Remediation in Polluted Environments -- 9.3 Biosurfactants -- 9.3.1 Synthesis of Biosurfactants -- 9.3.2 Biosurfactant Role in Oil Degradation -- 9.4 Application of Biosurfactants Used for Oil Remediation -- 9.4.1 Oil-Polluted Soil Bioremediation -- 9.4.2 Bioremediation of Marine Oil Spills and Petroleum Contamination -- 9.4.3 Cleaning of Oil Tanks and Pipelines -- 9.4.4 Bioremediation of Heavy Metals and Toxic Pollutants -- 9.5 Conclusion -- References -- 10: Potential Applications of Anti-Adhesive Biosurfactants -- 10.1 Introduction -- 10.2 Biosurfactants That Display Anti-Adhesive Activity -- 10.3 Biofilms and the Adhesion Process: Mechanisms and Effects -- 10.4 Applications of Biosurfactants as Anti-Adhesive Agents -- 10.4.1 Anti-Adhesive Applications in the Biomedical Field -- 10.4.2 Anti-Adhesive Applications in the Food Industry Surfaces -- 10.5 Future Trends and Conclusions -- References. , 11: Applications of Biosurfactant for Microbial Bioenergy/Value-Added Bio-Metabolite Recovery from Waste Activated Sludge -- 11.1 Introduction -- 11.2 Applications of Surfactants for Value-Added Bio-Metabolites Recovery from WAS -- 11.3 Applications of Surfactants for Energy Recovery from WAS -- 11.4 Applications of Surfactants for Refractory Organic Decontamination from WAS -- 11.4.1 PAHs Decontamination -- 11.4.2 Dye Decontamination -- 11.4.3 PCB Decontamination -- 11.5 Applications of Surfactants for WAS Dewatering -- 11.6 Applications of Surfactants for Heavy Metal Removal from WAS -- 11.7 State-of-the-Art Processes to Promote Organics Biotransformation from WAS -- 11.7.1 Co-Pretreatment -- 11.7.2 Interfacing AD with Bioelectrochemical Systems -- 11.7.3 Optimizing Process Conditions -- 11.8 Conclusion -- References -- 12: Application of Microbial Biosurfactants in the Pharmaceutical Industry -- 12.1 Introduction -- 12.2 Mechanism of Interaction of Biosurfactants -- 12.3 Physiochemical Properties -- 12.3.1 Surface Tension -- 12.3.2 Biosurfactant and Self-Assembly -- 12.3.3 Emulsification Activity -- 12.4 Application of Biosurfactants in Pharmaceutical Industry -- 12.4.1 Biosurfactant as an Antitumor/AntiCancer Agent -- 12.4.2 Biosurfactants as Drug Delivery Agents -- 12.4.3 Wound Healing and Dermatological Applications -- 12.4.4 Potential Antimicrobial Application -- 12.4.5 Other Applications in the Pharmaceutical Field -- 12.5 Applications of Surfactin in Pharmaceutical Industry -- 12.6 Concluding Remarks -- References -- 13: Antibacterial Biosurfactants -- 13.1 Introduction -- 13.2 Glycolipids -- 13.2.1 Rhamnolipids -- 13.2.2 Sophorolipids -- 13.2.3 Trehalose Lipids -- 13.3 Lipopeptides -- 13.4 Phospholipids -- 13.5 Antibacterial Activity -- 13.6 Polymeric Surfactants -- 13.7 Fatty Acids -- 13.7.1 Bio-Sources of Fatty Acids. , 13.7.2 Role of Fatty Acids as Antimicrobials.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Adhesives-Environmental aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (300 pages)
    Edition: 1st ed.
    ISBN: 9781119655084
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Anti-Adhesive Coatings: A Technique for Prevention of Bacterial Surface Fouling -- 1.1 Bacterial Surface Fouling (Biofouling) -- 1.2 Negative Effects of Biofouling by Bacteria on Practical Applications -- 1.3 Anti-Adhesive Coatings for Preventing Bacterial Surface Fouling -- 1.3.1 Hydrophilic Polymers -- 1.3.2 Zwitterionic Polymers -- 1.3.3 Super-Hydrophobic Polymers -- 1.3.4 Slippery Liquid Infused Porous Surfaces (SLIPS) -- 1.3.5 Protein and Glycoprotein-Based Coatings -- 1.4 Bifunctional Coatings With Anti-Adhesive and Antibacterial Properties -- 1.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 2 Lignin-Based Adhesives -- 2.1 Introduction -- 2.2 Native Lignin and Source of Technical Lignin -- 2.2.1 Native Lignin -- 2.2.2 Technical Lignins -- 2.3 Limitations of Technical Lignins -- 2.3.1 Heterogeneity of Technical Lignins -- 2.3.2 Reactivity of Technical Lignins -- 2.4 Lignin Pre-Treatment/Modification for Adhesive Application -- 2.4.1 Physical Pre-Treatment -- 2.4.2 Chemical Modification -- 2.5 Challenges and Prospects -- 2.6 Conclusions -- References -- Chapter 3 Green Adhesive for Industrial Applications -- 3.1 Introduction -- 3.2 Advanced Green Adhesives Categories- Industrial Applications -- 3.2.1 Keta Spire Poly Etherether Ketone Powder Coating -- 3.2.2 Bio-Inspired Adhesive in Robotics Field Application -- 3.2.3 Bio-Inspired Synthetic Adhesive in Space Application -- 3.2.3.1 Micro Structured Dry Adhesive Fabrication for Space Application -- 3.2.4 Natural Polymer Adhesive for Wood Panel Industry -- 3.2.5 Tannin Based Bio-Adhesive for Leather Tanning Industry -- 3.2.6 Conductive Adhesives in Microelectronics Industry -- 3.2.7 Bio-Resin Adhesive in Dental Industry -- 3.2.8 Green Adhesive in Fiberboard Industry -- 3.3 Conclusions and Future Scope. , References -- Chapter 4 Green Adhesives for Biomedical Applications -- 4.1 Introduction -- 4.2 Main Raw Materials of Green Adhesives: Structure, Composition, and Properties -- 4.2.1 Chitosan -- 4.2.2 Alginate -- 4.2.3 Lignin -- 4.2.4 Lactic Acid PLA -- 4.3 Properties Characterization of Green Adhesives for Biomedical Applications -- 4.3.1 Diffraction X-Rays (DRX) -- 4.3.2 Atomic Force Microscopy (AFM) -- 4.3.3 Scanning Electron Microscope (SEM Images) -- 4.3.4 Wettability or Contact Angle (CA) -- 4.3.5 Fourier Transform Infrared Spectroscopy (FTIR) -- 4.3.6 Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) -- 4.3.7 Thermal Analysis (TG/DTG/DTA and DSC Curves) -- 4.3.8 Surface Area and Porosimetry Analyzer (ASAP) -- 4.3.9 Mechanical Properties of Green Adhesives -- 4.4 Biomedical Applications of Natural Polymers -- 4.4.1 Alginate -- 4.4.1.1 Biomedical Applications of Alginate -- 4.4.2 Chitosan -- 4.4.2.1 Biomedical Applications of Chitosan -- 4.4.3 Lignin -- 4.4.3.1 Biomedical Applications of Lignin -- 4.4.4 Polylactide (PLA) -- 4.4.4.1 Biomedical Applications of PLA -- 4.5 Final Considerations -- Acknowledgements -- References -- Chapter 5 Waterborne Adhesives -- 5.1 Introduction -- 5.1.1 Motivation for the Use of Waterborne Adhesives -- 5.1.1.1 Sustainability and Environment Regulations -- 5.1.1.2 Circular Economy -- 5.1.1.3 Avoid Harmful Emissions -- 5.1.1.4 Development of Novel and Sustainable End Products -- 5.1.2 Environmental Effects and Mankind Toxicity Analysis -- 5.2 Performance of Waterborne Adhesives: An Overview -- 5.2.1 Waterborne Polyurethane (WBPU) Adhesives -- 5.2.1.1 Chemical Structure of Waterborne PU -- 5.2.1.2 Performances of WBPU Adhesives -- 5.2.2 Waterborne Epoxy Adhesive -- 5.3 Conclusions -- References -- Chapter 6 Using Polyfurfuryl Alcohol as Thermoset Adhesive/Sealant -- 6.1 Introduction. , 6.2 Furfuryl Alcohol as Adhesives -- 6.3 Polyfurfuryl Alcohol as Sealants -- 6.3.1 Effect of Different Parameters on the Curing of PFA-Based Sealants -- 6.4 Applications -- 6.5 Conclusions -- Acknowledgement -- References -- Chapter 7 Bioadhesives -- 7.1 Introduction -- 7.2 History of Bioadhesives -- 7.3 Classification of Bioadhesives -- 7.4 Mechanism of Bioadhesion -- 7.4.1 Mechanical Interlocking -- 7.4.2 Chain Entanglement -- 7.4.3 Intermolecular Bonding -- 7.4.4 Electrostatic Bonding -- 7.5 Testing of Bioadhesives -- 7.5.1 In Vitro Methods -- 7.5.1.1 Shear Stress Measurements -- 7.5.1.2 Peel Strength Evaluation -- 7.5.1.3 Flow Through Experiment and Plate Method -- 7.5.2 Ex Vitro Methods -- 7.5.2.1 Adhesion Weight Method -- 7.5.2.2 Fluorescent Probe Methods -- 7.5.2.3 Falling Liquid Film Method -- 7.6 Application of Bioadhesives -- 7.6.1 Bioadhesives as Drug Delivery Systems -- 7.6.2 Bioadhesives as Fibrin Sealants -- 7.6.3 Bioadhesives as Protein-Based Adhesives -- 7.6.4 Bioadhesives in Tissue Engineering -- 7.7 Conclusion -- References -- Chapter 8 Polysaccharide-Based Adhesives -- 8.1 Introduction -- 8.2 Cellulose-Derived Adhesive -- 8.2.1 Esterification -- 8.2.1.1 Cellulose Nitrate -- 8.2.1.2 Cellulose Acetate -- 8.2.1.3 Cellulose Acetate Butyrate -- 8.2.2 Etherification -- 8.2.2.1 Methyl Cellulose -- 8.2.2.2 Ethyl Cellulose -- 8.2.2.3 Carboxymethyl Cellulose -- 8.3 Starch-Derived Adhesives -- 8.3.1 Alkali Treatment -- 8.3.2 Acid Treatment -- 8.3.3 Heating -- 8.3.4 Oxidation -- 8.4 Natural Gums Derived-Adhesives -- 8.5 Fermentation-Based Adhesives -- 8.6 Enzyme Cross-Linked-Based Adhesives -- 8.7 Micro-Biopolysaccharide-Based Adhesives -- 8.8 Mechanism of Adhesion -- 8.9 Tests for Adhesion Strength -- 8.10 Applications -- 8.10.1 Biomedical Applications -- 8.10.2 Food Stuffs Applications -- 8.10.3 Pharmaceutical Applications. , 8.10.4 Agricultural Applications -- 8.10.5 Cigarette Manufacturing -- 8.10.6 Skin Cleansing Applications -- 8.11 Conclusion -- References -- Chapter 9 Wound Healing Adhesives -- 9.1 Introduction -- 9.2 Wound -- 9.2.1 Types of Wounds -- 9.2.1.1 Acute Wounds -- 9.2.1.2 Chronic Wounds -- 9.3 Structure and Function of the Skin -- 9.4 Mechanism of Wound Healing -- 9.5 Wound Closing Techniques -- 9.6 Wound Healing Adhesives -- 9.7 Types of Wound Healing Adhesives Based Upon Site of Application -- 9.7.1 External Use Wound Adhesives -- 9.7.1.1 Steps for Applying External Wound Healing Adhesives on Skin [30] -- 9.7.2 Internal Use Wound Adhesives -- 9.8 Types of Wound Healing Adhesives Based Upon Chemistry -- 9.8.1 Natural Wound Healing Adhesives -- 9.8.1.1 Fibrin Sealants/Fibrin-Based Tissue Adhesives -- 9.8.1.2 Albumin-Based Adhesives -- 9.8.1.3 Collagen and Gelatin-Based Wound Healing Adhesives -- 9.8.1.4 Starch -- 9.8.1.5 Chitosan -- 9.8.1.6 Dextran -- 9.8.2 Synthetic Wound Healing Adhesives -- 9.8.2.1 Cyanoacrylate -- 9.8.2.2 Poly Ethylene Glycol-Based Wound Adhesives (PEG) -- 9.8.2.3 Hydrogels -- 9.8.2.4 Polyurethane -- 9.9 Summary -- References -- Chapter 10 Green-Wood Flooring Adhesives -- 10.1 Introduction -- 10.2 Wood Flooring -- 10.2.1 Softwood Flooring -- 10.2.2 Hardwood Flooring -- 10.2.3 Engineered Wood Flooring -- 10.2.4 Laminate Flooring -- 10.2.5 Vinyl Flooring -- 10.2.6 Agricultural Residue Wood Flooring Panels -- 10.3 Recent Advances About Green Wood-Flooring Adhesives -- 10.3.1 Xylan -- 10.3.2 Modified Cassava Starch Bioadhesives -- 10.3.3 High-Efficiency Bioadhesive -- 10.3.4 Bioadhesive Made From Soy Protein and Polysaccharide -- 10.3.5 Green Cross-Linked Soy Protein Wood Flooring Adhesive -- 10.3.6 "Green" Bio-Thermoset Resins Derived From Soy Protein Isolate and Condensed Tannins. , 10.3.7 Development of Green Adhesives Using Tannins and Lignin for Fiberboard Manufacturing -- 10.3.8 Cottonseed Protein as Wood Adhesives -- 10.3.9 Chitosan as an Adhesive -- 10.3.10 PE-cg-MAH Green Wood Flooring Adhesive -- References -- Chapter 11 Synthetic Binders for Polymer Division -- List of Abbreviations -- 11.1 Introduction -- 11.2 Classification of Adhesives Based on Its Chemical Properties -- 11.2.1 Thermoset Adhesives -- 11.2.2 Thermoplastic Adhesives -- 11.2.3 Adhesive Blends -- 11.3 Adhesives Characteristics -- 11.4 Adhesives Classification Based on Its Function -- 11.4.1 Permanent Adhesives -- 11.4.2 Removable Adhesives -- 11.4.3 Repositionable Adhesives -- 11.4.4 Blended Adhesives -- 11.4.5 Anaerobic Adhesives -- 11.4.6 Aromatic Polymer Adhesives -- 11.4.7 Asphalt -- 11.4.8 Adhesives Based on Butyl Rubber -- 11.4.9 Cellulose Ester Adhesives -- 11.4.10 Adhesives Based on Cellulose Ether -- 11.4.11 Conductive Adhesives -- 11.4.12 Electrically Conductive Adhesive Materials -- 11.4.13 Thermally Conductive Adhesives -- 11.5 Resin -- 11.5.1 Unsaturated Polyester Resin -- 11.5.2 Monomers -- 11.5.2.1 Unsaturated Polyester -- 11.5.2.2 Alcohol Constituents -- 11.5.2.3 Constituents Like Anhydride and Acid -- 11.5.3 Vinyl Monomers of Unsaturated Polyester Resins -- 11.5.4 Styrenes -- 11.5.5 Acrylates and Methacrylates -- 11.5.6 Vinyl Ethers -- 11.5.7 Fillers -- 11.6 Polyurethanes -- 11.6.1 Monomers -- 11.6.1.1 Diisocyanates -- 11.6.1.2 Phosgene Route -- 11.6.1.3 Phosgene-Free Route -- 11.6.1.4 Polyols -- 11.6.1.5 Vinyl Functionalized Polyols -- 11.6.1.6 Polyols Based on Modified Polyurea -- 11.6.1.7 Polyols Based on Polyester -- 11.6.1.8 Acid and Alcohols-Based Polyesters -- 11.6.2 Rectorite Nanocomposites -- 11.6.3 Zeolite -- 11.7 Epoxy Resins -- 11.7.1 Monomers -- 11.7.1.1 Epoxides -- 11.7.1.2 Hyper Branched Polymers. , 11.7.2 Epoxide Resins Based on Liquid Crystalline Structure.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Hauppauge :Nova Science Publishers, Incorporated,
    Keywords: Polymerization. ; Polymers. ; Electronic books.
    Description / Table of Contents: It is well known that polymeric and composite materials are finding various applications in some critical areas of human endeavors, such as medicine, medical appliances, energy and the environment. This edition will, hopefully, evoke interest from scientists working in the fields of chemistry, polymer chemistry, electrochemistry and material science. Its applications and uses include: polymer electrolyte membrane fuel cells, sensors, actuators, coatings, electrochromic and electroluminescent materials, magnetic polymers, organo-metallic polymers, tissue engineering, methods of the immobilization of biological molecules, and dental and orthopedic applications. This edition is a highly valuable source for scientists, researchers, upper-level undergraduate and graduate students, as well as college and university professors, because it provides the most up-to-date reference work summarizing the pioneering research work in the field of polymeric and composite materials.
    Type of Medium: Online Resource
    Pages: 1 online resource (372 pages)
    Edition: 1st ed.
    ISBN: 9781629480619
    Series Statement: Polymer Science and Technology
    DDC: 620.192
    Language: English
    Note: Intro -- ADVANCED FUNCTIONAL POLYMERS AND COMPOSITES: MATERIALS, DEVICES AND ALLIED APPLICATIONS. VOLUME 1 -- ADVANCED FUNCTIONAL POLYMERS AND COMPOSITES: MATERIALS, DEVICES AND ALLIED APPLICATIONS. VOLUME 1 -- Library of Congress Cataloging-in-Publication Data -- Dedication -- Contents -- Preface -- Contributors -- About the Editor -- Acknowledgments -- Chapter 1: Advances in Membranes for High Temperature Polymer Electrolyte Membrane Fuel Cells -- Abstract -- Abbreviations -- 1. Introduction -- 2. Proton Exchange Membrane Fuel Cells (PEMFCS) -- 2.1. Role of Proton Conducting Membrane in Proton Exchange Membrane Fuel Cells -- 2.2. Requirement for Proton Conducting Membrane for Proton Exchange Membrane Fuel Cells -- 2.3. Current Status of Perfluorinated Sulfonic Acid and Alternative Proton Conducting Membranes -- 2.4. Proton Transport in Sulfonic Acid Membranes -- 2.5. Challenges Facing Sulfonic Acid Membranes in Proton Exchange Membrane Fuel Cells -- 3. High Temperature Polymer Electrolyte -- Membrane Fuel Cell -- 3.1. Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells -- 3.2. Membranes Obtained by Modification with Hygroscopic Inorganic Fillers -- 3.3. Membranes Obtained by Modification with Solid Proton Conductors -- 3.4. Membranes Obtained by Modification with Less Volatile Proton Assisting Solvent -- 3.4.1. Doping with Heterocyclic Solvents -- 3.4.2. Doping with Phosphoric Acid -- 3.4.3. Radiation Grafted and Acid Doped Membranes -- 3.5. Disadvantages of Using Phosphoric Acid Composite Membranes for High Temperature Proton Exchange Membrane Fuel Cell Applications -- 3.6. Alternative Membranes Based on Benzimidazole Derivatives -- 3.7. Alternative Benzimidazole Polymers Doped with Heteropoly Acids -- 3.8. Membrane Impregnated with Ionic Liquids -- 3.9. Summary of Membranes Obtained by Modification of Sulfonic. , Acid Ionomers -- 4. Proton Conduction Mechanism in High Temperature Proton Conducting Membrane -- Conclusion and Prospectives -- Acknowledgments -- References -- Chapter 2: Surface-Confined Ruthenium and Osmium Polypyridyl Complexes as Electrochromic Materials -- Abstract -- Abbreviations -- 1. Introduction -- 1.1. Electrochromic Windows, Displays and Mirrors -- 1.2. Classes of Electrochromic Materials -- 1.3. Metal Complexes As Electrochromic Materials -- 1.3.1. Ruthenium (II) Complexes As Electrochromic Materials -- (I). Optical Behavior of Ruthenium Complexes -- (II). Redox Behavior of Ruthenium Complexes -- (III). Role of Spacers in Dinuclear Ruthenium Complexes -- 1.3.2. Osmium (II) Complexes As Electrochromic Materials -- 1.3.3. Other Metal Complexes As Electrochromic Materials -- 1.4. Substrates Used for Electrochromic Material -- 1.5. Modification of Substrates -- 2. Surface-Confined Ruthenium Complexes -- As Electrochromic Materials -- 2.1. Chemically Adsorbed Ruthenium Complexes -- 2.2. Physically Adsorbed Ruthenium Complexes -- 3. Surface-Confined Osmium Complexes -- As Electrochromic Materials -- 3.1. Osmium Complex-Based Monolayer -- 3.2. Osmium Complex-Based Multilayer -- 4. Surface-Confined Hetero-Metallic -- Complexes As Electrochromic Materials -- 4.1. Coordinative Supramolecular Assembly As Thin Films -- Conclusion -- Acknowledgments -- References -- Chapter 3: Magnetic Polymeric Nanocomposite Materials: Basic Principles Preparations and Microwave Absorption Application -- 1Department of Materials Science, School of Applied Physics, Faculty of Science -- and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia -- 2Institute of Hydrogen Economy, Universiti Teknologi Malaysia, -- Jalan Semarak, Kuala Lumpur, Malaysia -- Abstract -- Abbreviations -- 1. Introduction -- 2. Historical Background. , 3. Interaction Mechanisms of Electromagnetic Wave -- with Materials -- 3.1. Interaction Mechanism with Conductor Materials -- 3.2. Interaction Mechanism with Dielectric Materials -- 3.3. Interaction Mechanism with Magnetic Materials -- 4. The Reason of Using Microwave Absorbing Materials -- 5. The Criteria for Choosing the Filler and the -- Importance of Matching Conditions for Ideal -- Microwave Absorbing Materials -- 5.1. Metal-Backed Single Layer Absorber Mode -- 5.2. Stand-Alone Absorbing Material Model -- 6. Types and Properties of Polymers -- 7. Magnetic Polymer Nanocomposites -- 7.1. Nanomaterials -- 7.2. Magnetic Polymer Nanocomposites' Properties -- 7.3. Magnetic Polymer Nanocomposites' Applications -- 7.4. The Importance of Dispersion in Magnetic Polymer Nanocomposites -- 8. Preparation and Processing of -- Magnetic Polymer Nanocomposites -- 8.1. In-Situ Oxidative Polymerization Method (with Sonication) -- 8.2. One-Step Chemical Method -- 8.3. Surface-Initiated Polymerization Method -- 8.4. Microemulsion Chemical Oxidative Polymerization Method -- 8.5. Reverse Micelle Microemulsion Method -- 8.6. In-Situ Inverse Microemulsion Polymerization -- 8.7. Irradiation Induced Inverse Emulsion Polymerization -- 8.8. Miniemulsion Polymerization -- 8.9. Mechanical Melt Blending Method -- 8.10. Melt Processing Method Using Ultrasonic Bath -- 8.11. Template Free Method -- 8.12. Solution Casting Method -- 8.13. Sonochemical Method -- 8.14. Electrochemical Synthesis -- 9. Electromagnetic Wave Absorption Application of Magnetic Polymer Nanocomposites -- 9.1. The Crucial Role of Magnetic Nanoparticles and Sample Thickness in the Determination of the Microwave Absorption Application -- 9.2. Effect of Magnetic Filler Size on the Microwave Absorption and/or Electromagnetic Interference Shielding Application. , 9.3. Broadening the Microwave Absorption Range for Low and High Frequency Applications Using Binary Magnetic Nanofillers -- 9.4. The Enhancement of the Microwave Absorption for Electromagnetic Interference Shielding Application Using Magnetic and Dielectric Nanofillers -- Conclusion -- References -- Chapter 4: Polyetheramide-Birth of a New Coating Material -- Abstract -- Abbreviations -- 1. Introduction -- 2. Raw Materials and Test Methods -- 3. Linseed Oil Based Polyetheramides[LPEtA] -- 4. Soybean Oil Based Polyetheramides (SPEtA) -- 5. Albizia Lebbek Benth Oil Based PEtA (ABOPEtA) -- 6. Jatropha Seed Oil Based PEtA(JPEtA) -- 6. Olive Oil Based PEtA (OPEtA) -- Conclusion -- Acknowledgments -- References -- [1] Sørensen, P. A., Kiil,S., Dam-Johansen, K. & -- Weinell, C. E. (2009). Anticorrosive coatings: a review, J. Coat. Technol. Res., 6(2), 135-176. -- Chapter 5: Advanced Functional Polymers and Composite Materials and Their Role in Electroluminescent Applications -- Abstract -- Introduction & -- Scope of the Work -- 1. Light Emitting Diodes (LEDs), Characteristics and Categories -- (a) LED- Device Configuration -- (b) Recent Developments in The LED's Technology -- In-organic Light Emitting Diode -- Materials & -- Characteristics -- 3-I. Luminescence and Scintillation from the Inorganic Phosphor Materials -- An Ideal Luminescencent Material's Characteristics -- 3-II. Scintillation -- 3-III. Inorganic Electroluminescent Materials & -- Devices -- Organic Light Emitting Diodes Devices (OELDs) -- 4- (i). OLED Characteristics -- 4-(ii). OLED- Device Configuration & -- Working Principle -- 4-(iii). General Electroluminescent Materials Used for OLED Devices -- 4-(iv). OLED Device Fabrication -- 4-(v). OLED- Electro-Optical (EO) Properties -- 4-(vi). Quantum Efficiency of OLED Devices -- The Classifications of OLED types. , 4-I. An Overview of Historical Background about Polymeric OLEDs -- (P-OLEDs) -- 4-II. Polymeric OLEDs (P-OLEDs) as Electroluminescent Devices -- 4- III. Polymeric OLEDs (P-OLEDs) Employed in Various Device's Applications -- Conclusion -- Acknowledgments -- References -- [1] Akcelrud, L. Prog. Polym. Sci. 28 (2003). 875-962. -- Chapter 6: Poly(Methacrylic Acid) and Poly (Itaconic Acid) Applications as pH-Sensitive Actuators -- Abstract -- Abbreviations -- 1. Introduction -- 2. Methacrylic Acid and Itaconic Acid -Basic Properties -- 2. Poly(methacrylic acid) and Poly(Itaconic Acid) pH-sensitive Polymers -- 2.1. Linear Systems -- 2.2. Hydrogels -- 2.3. Amphiphillic Block and Graft Copolymers (Micelles) -- 2.4. Modified Surfaces and Membranes -- Conclusion -- Acknowledgments -- References -- Chapter 7: Cell Scaffolds and Fabrication Technologies for Tissue Engineering -- Abstract -- Abbreviations -- 1. Introduction -- 2. Cell Based-Therapies for Tissue Engineering -- 3. Scaffolds Preparation Technologies -- 3.1. Nanofibrous -- 3.2. Freeze-Drying -- 3.3. Fiber Bonding -- 3.4. Phase Separation -- 3.5. Gas Foaming -- 3.6. Rapid Prototyping -- 4. Special Applications in Tissue Ingineering -- 4.1. Injectable Matrices for Cell Therapy -- 4.2. Bioceramic Matrices for Cell Therapy -- Conclusion -- Acknowledgments -- References -- Chapter 8: Immobilization of Lipase by Physical Adsorption on Selective Polymers -- Abstract -- Abbreviations -- 1. Introduction -- 2. The Mechanism of Action of Lipases -- 3. Properties of Enzymes Influenced by Immobilization -- 4. Properties of Matrices for Immobilization -- 5. Methods for Enzyme Immobilization -- 5.1. Physical Adsorption -- Advantages and Disadvantages of Enzymes Immobilization Using the Adsorption Technique -- 5.2. Ionic Binding -- 5.3. Covalent Binding. , Advantages and Disadvantages of Enzymes Immobilization Using the Covalent Technique.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Storage batteries. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (494 pages)
    Edition: 1st ed.
    ISBN: 9781119714736
    DDC: 621.312424
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Progress in Separators for Rechargeable Batteries -- 1.1 Separator Overview -- 1.2 Polymer Membrane -- 1.2.1 Polyolefin Separators -- 1.2.2 PVDF -- 1.2.3 PTFE -- 1.2.4 PU -- 1.2.5 PVA -- 1.2.6 Cellulose -- 1.2.7 Other Polymer -- 1.3 Non-Woven Fabric Separator -- 1.3.1 PET -- 1.3.2 PAN -- 1.3.3 PVDF -- 1.3.4 PTFE -- 1.3.5 PVA -- 1.3.6 PI -- 1.4 Polymer Electrolyte -- 1.5 Conclusions -- References -- Chapter 2 Pb Acid Batteries -- 2.1 History of Batteries -- 2.2 Primary Batteries -- 2.3 Secondary Batteries -- 2.4 Flow Batteries -- 2.4.1 All Vanadium Redox Flow Batteries (VRBs) -- 2.4.2 Zinc-Bromine Flow Cells -- 2.5 Lead-Acid Batteries -- 2.5.1 Early Applications of Lead-Acid Batteries -- 2.5.2 Comparison With Other Types of Secondary Batteries -- 2.5.3 Electrochemistry of Lead-Acid Batteries -- 2.5.4 Basic Components of Lead-Acid Cells -- 2.5.5 Types of Lead-Acid Batteries -- 2.5.6 Charging -- 2.5.7 Maintenance -- 2.5.8 Failure Modes -- List of Abbreviations -- References -- Chapter 3 Flexible Batteries -- 3.1 Introduction -- 3.2 Battery Types -- 3.2.1 Lead-Acid Battery -- 3.2.2 Nickel Cadmium -- 3.2.3 Nickel/Hydrogen and Nickle/Metal Hydride -- 3.2.4 Lithium-Ion Batteries -- 3.3 Storage Mechanism -- 3.3.1 Flexible Electrode -- 3.3.2 Carbon Base Flexible Electrodes -- 3.4 Graphene Base Flexible Batteries -- 3.5 Metal Oxide-Based Flexible Batteries -- 3.6 Fiber-Shape Designed Flexible Batteries -- 3.7 Natural Fiber Base Flexible Batteries -- 3.8 Flexible Electrolytes -- 3.9 Conclusion -- References -- Chapter 4 Polymer Electrolytes in Rechargeable Batteries -- 4.1 Introduction -- 4.2 Solid Electrolytes for Rechargeable Batteries -- 4.2.1 Solid Oxide Electrolytes -- 4.2.2 Sulfide Solid Electrolytes -- 4.2.3 Inorganic-Organic Hybrid Electrolytes. , 4.2.4 Solid Polymer Electrolytes in Rechargeable Batteries -- 4.3 Polymer-Based Electrolytes -- 4.4 Classification of Polymer-Based Electrolytes -- 4.4.1 Polymer-Salt Complexes -- 4.4.2 Plasticized Polymer Electrolytes -- 4.4.3 Rubbery Electrolytes -- 4.4.4 Solvent-Swollen Polymers -- 4.4.5 Polyelectrolytes -- 4.4.6 Gel Polymer Electrolytes -- 4.4.7 Composite Polymer Electrolytes (CPEs) -- 4.4.8 Ionic Liquid Incorporated Polymer/Gel Electrolytes -- 4.5 Conclusion and Future Prospects -- References -- Chapter 5 Advancement in Electrolytes for Rechargeable Batteries -- 5.1 Introduction -- 5.2 Aqueous Electrolytes -- 5.2.1 Lithium Nitrate -- 5.2.2 Saturated LiCl Electrolyte -- 5.2.3 Aqueous Sodium Salts -- 5.3 Non-Aqueous Electrolytes -- 5.4 Polymer Electrolytes -- 5.4.1 Solid Polymer Electrolytes (SPE) -- 5.4.2 Gel Polymer Electrolytes (GPE) -- 5.5 Ionic Liquids Electrolytes (ILE) -- 5.6 Hybrid Electrolytes -- 5.7 Conclusions -- Acknowledgements -- References -- Chapter 6 Fabrication Assembly Techniques for K-Ion Batteries -- 6.1 Introduction -- 6.2 Battery and Its Types -- 6.3 Ni-Cd Batteries -- 6.4 Li-Ion Batteries -- 6.5 Advantages of Rechargeable Batteries -- 6.6 Disadvantages of Rechargeable Batteries -- 6.7 K-Ion Batteries -- 6.8 Advantages -- 6.9 Disadvantages -- 6.10 Honeycomb Structure of K-Ion Batteries -- 6.10.1 Methods/Synthesis of Potassium Tellurates -- 6.11 Negative Electrode Materials for K-Ion Batteries -- 6.12 K-Ion Batteries Based on Patterned Electrodes -- 6.13 Conclusion -- Acknowledgement -- References -- Chapter 7 Recent Advances in Ni-Fe Batteries as Electrical Energy Storage Devices -- 7.1 Introduction -- 7.2 Structure of Ni-Fe Batteries -- 7.3 Discussion on Electrochemical Parameters of Various Materials for Ni-Fe Batteries -- 7.4 Conclusions -- References -- Chapter 8 Nickel-Metal Hydride (Ni-MH) Batteries -- 8.1 Introduction. , 8.2 History -- 8.3 Invention of the Rechargeable Battery -- 8.4 Metal Hydrides (MH) -- 8.5 Thermodynamics and Crystal Structures of Ni-MH Battery Materials -- 8.5.1 Thermodynamics -- 8.5.2 Crystal Structures of Battery Materials -- 8.5.3 Crystal Structure of AB -- 8.5.3 Crystal Structure of AB5 and AB2 Materials -- 8.5.4 Structure of AB5 Compounds -- 8.5.5 Structure of AB2 Compounds -- 8.5.6 Substitutions of A and B Components in AB5 and AB2 -- 8.5.7 Mg-Based Alloys -- 8.5.8 Rare Earth-Mg-Ni-Based Alloys -- 8.5.9 Ti-V-Based Alloys -- 8.6 Ni-MH Batteries -- 8.7 Mechanism of Ni-MH Batteries -- 8.7.1 Battery Description -- 8.7.2 Principle -- 8.7.3 Negative Electrode -- 8.7.4 Positive Electrode -- 8.7.5 Electrolyte -- 8.7.6 Separator -- 8.8 Materials -- 8.9 Charging Nickel-Based Batteries -- 8.9.1 Guidelines for Charging -- 8.10 Performance -- 8.11 Factors Affecting Life -- 8.11.1 Exposure to Elevated Temperatures -- 8.11.2 Reversal -- 8.11.3 Extended Storage under Load -- 8.11.4 Limiting Mechanisms -- 8.12 Advantages -- 8.13 Applications -- 8.13.1 Electric Vehicles -- 8.13.2 Fuel Cell (FC) EVs -- 8.13.3 Pure EVs -- 8.13.4 Hybrid EVs -- 8.13.5 Applications in Traditional Portable Electronic Devices -- 8.13.5.1 Mobile Phones -- 8.13.5.2 Digital Cameras -- 8.14 Recent Developments and Research Work -- 8.15 Shortcomings -- References -- Chapter 9 Ni-Cd Batteries -- 9.1 Introduction -- 9.2 History -- 9.3 Characteristics -- 9.4 Construction and Working -- 9.5 Types of NiCd Batteries -- 9.6 Memory Effect -- 9.7 Maintenance and Safety -- 9.8 Availability and Cost -- 9.9 Applications -- 9.9.1 Transportation in Hybrid and Electric Vehicles -- 9.9.2 Aircrafts -- 9.9.3 Electronic Flash Units -- 9.9.4 Cordless Applications -- 9.9.5 Motorized Equipment -- 9.9.6 Two Ways Radios -- 9.9.7 Medical Instrumentation -- 9.9.8 Toys -- 9.10 Advantages and Disadvantages. , 9.11 Recycling of NiCd Batteries -- 9.12 Comparison With Other Batteries -- 9.13 Conclusion -- Acknowledgement -- References -- Chapter 10 Ca-Ion Batteries -- 10.1 Introduction -- 10.2 Selection of Anodic and Cathodic Materials -- 10.2.1 Alloy Anodes -- 10.2.1.1 Choice of Cathodes for Calcium-Ion Batteries -- 10.2.1.2 Choice of Anodes for Calcium-Ion Batteries -- 10.3 Electrochemical Arrangement -- 10.4 Electrode Materials -- 10.5 Conclusions and Perspectives -- References -- Chapter 11 Analytical Investigations in Rechargeable Batteries -- 11.1 Introduction -- 11.2 Components of a Battery -- 11.3 Principle of Rechargeable Battery -- 11.4 Aging of Rechargeable Battery -- 11.5 Analysis Techniques Used for Rechargeable Batteries -- 11.5.1 X-Ray Based -- 11.5.2 Neutron Based -- 11.5.3 Optical Analysis Techniques -- 11.5.4 Electron Based -- 11.5.5 Vibrational Analysis Techniques -- 11.5.6 Magnetism Based -- 11.5.7 Gravimetric-Based Analysis Techniques -- 11.6 Conclusion -- References -- Chapter 12 Remediation of Spent Rechargeable Batteries -- 12.1 Introduction -- 12.2 A Brief History of Battery Origin -- 12.3 The Types of Batteries -- 12.3.1 Types of Primary Batteries -- 12.3.1.1 Types of Secondary Batteries -- 12.4 Recharge the Battery -- 12.5 Battery Life -- 12.6 A Lithium-Ion Battery (LIB) -- 12.6.1 Advantages of Li-Ion Batteries -- 12.6.2 Disadvantages of Li-Ion Batteries -- 12.7 Impact of Batteries on Health -- 12.7.1 Protection Against Battery Disadvantages [101] -- 12.8 Mercury (Hg) -- 12.9 Remediation of Spent Rechargeable Batteries -- 12.9.1 Future and Challenges: Nanotechnology in Batteries -- 12.10 Conclusions -- References -- Chapter 13 Classification, Modeling, and Requirements for Separators in Rechargeable Batteries -- Acronyms -- 13.1 Introduction and Area -- 13.2 Separators in Rechargeable Batteries. , 13.3 Classification of Separator in Rechargeable Batteries -- 13.3.1 Nonwoven Separators -- 13.3.2 Microporous Membrane Separators -- 13.3.3 Ion-Exchange Membrane Separators -- 13.3.4 Nanoporous Membrane Separators -- 13.4 Properties of Separator in Rechargeable Batteries -- 13.5 Requirements for Separator in Rechargeable Batteries -- 13.6 Modeling of Separator in Rechargeable Batteries -- 13.7 Results and Discussions -- 13.8 Future Approach -- 13.9 Conclusion -- References -- Chapter 14 Research and Development and Commercialization in Rechargeable Batteries -- 14.1 Introduction -- 14.1.1 Types of Rechargeable Batteries (RBs) and Challenges Faced Towards Practical Applications -- 14.1.1.1 Li-Ion Batteries (LIBs) -- 14.1.1.2 Na and K-Ion Batteries -- 14.1.1.3 Magnesium Rechargeable Batteries (MgRBs) -- 14.1.1.4 Aqueous RBs -- 14.1.1.5 Pb-Acid, Ni-Cd, and Ni-MH Batteries -- 14.1.1.6 Zinc-Ion RBs -- 14.1.1.7 Metal-Air Batteries -- 14.1.1.8 Flexible RBs -- 14.1.2 Nanotechnology Interventions in Rechargeable Batteries -- 14.2 Research and Development in Rechargeable Batteries -- 14.2.1 Zinc Rechargeable Batteries (ZnRBs) -- 14.2.2 Magnesium Rechargeable Batteries (MgRBs) -- 14.2.3 Aqueous RBs and Hybrid Aqueous RBs -- 14.2.4 Li-Based RBs -- 14.3 Commercialization Aspects of Rechargeable Batteries -- 14.4 Future Prospects of RBs -- 14.5 Conclusion -- References -- Chapter 15 Alkaline Batteries -- 15.1 Introduction -- 15.1.1 How Batteries Work -- 15.2 History -- 15.3 Advantages -- 15.4 Disadvantages -- 15.4.1 Internal Resistance -- 15.4.2 Leakage and Damages -- 15.5 Spent ARBs -- 15.6 Classification of ABs -- 15.6.1 Ni/Co Batteries -- 15.6.2 Ni/Ni ARBs -- 15.7 Application of ABs -- 15.8 Conclusion -- Acknowledgements -- References -- Chapter 16 Advances in "Green" Ion-Batteries Using Aqueous Electrolytes -- 16.1 Introduction. , 16.2 Monovalent Ion Aqueous Batteries.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Microbial biotechnology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (734 pages)
    Edition: 1st ed.
    ISBN: 9789811622250
    Series Statement: Environmental and Microbial Biotechnology Series
    Language: English
    Note: Intro -- Contents -- About the Editors -- 1: Application of Endophyte Microbes for Production of Secondary Metabolites -- 1.1 Introduction -- 1.2 Origin and Evolution of Endophytes -- 1.3 Endophyte Diversity -- 1.4 Close Relationship Between Endophytes and Medicinal Herbs -- 1.5 Endophytes and Secondary Metabolites -- 1.6 Terpenoids -- 1.7 Phenolics -- 1.8 Flavonoids -- 1.9 Alkaloids -- 1.10 Glycosides -- 1.11 Saponins -- 1.12 Polyketides -- 1.13 Coumarins -- 1.14 Steroids -- 1.15 Conclusion and Perspectives -- References -- 2: Application of Microbes in Synthesis of Electrode Materials for Supercapacitors -- 2.1 Introduction -- 2.1.1 Basics of Supercapacitors -- 2.1.2 Electrode Materials for Supercapacitors -- 2.1.3 Why Microbes in Energy Storage Devices? -- 2.2 Different Microbes Commonly Used in EES -- 2.2.1 Bacteria -- What so Special About Bacterial Cellulose? -- 2.2.2 Viruses -- 2.2.3 Fungi -- 2.3 Microbes as Bio-templates for Energy Storage Materials -- 2.3.1 Bacteria as Bio-templates -- 2.3.2 Fungi as Bio-templates -- 2.3.3 Viruses as Bio-templates -- 2.4 Microbe-Based Carbon Materials as Supporting Matrix -- 2.5 Microbe-Derived Carbons for Energy Storage Applications -- 2.5.1 Bacteria-Derived Carbons for Energy storage applications -- 2.5.2 Fungi-Derived Carbons for Energy Storage Applications -- 2.5.3 Microbe-Derived Carbon-Based Nanocomposites as Energy Storage Materials -- 2.6 Conclusion and Future Prospects -- References -- 3: Application of Microbes in Climate-Resilient Crops -- 3.1 Introduction -- 3.2 Heat Stress Tolerance -- 3.3 Cold Stress Tolerance -- 3.4 Submergence Stress Tolerance -- 3.5 Salinity and Drought Stress Tolerance -- 3.6 Conclusion and Future Perspectives -- References -- 4: Application of Microbes in Biotechnology, Industry, and Medical Field -- 4.1 Overview of Microorganisms -- 4.1.1 Prokaryotic Microorganisms. , Bacteria -- Archaea -- 4.1.2 Eukaryotic Microorganisms -- Protist -- Fungi -- Virus -- 4.2 Principles -- 4.2.1 Screening for Microbial Products -- Screening Methods -- 4.2.2 Microbial Bioprocess -- Optimization -- Sustainable Technologies -- 4.2.3 Enzymology -- 4.2.4 Gene Manipulation -- Recombinant DNA Technology -- 4.3 Applications -- 4.3.1 Industry -- Food-Fermented Foods -- Improvement of Food Quality -- Improvement Efficiency and Productivity of Process -- Food Additives -- Agroindustry -- Pest in Crops -- Crop Yield and Product Quality -- Construction -- Chemical Industry -- Cleaning -- Bioremediation -- Chemical-Based Cleaning Products -- 4.3.2 Environment -- Wastewater Treatment -- Solid Hazardous Treatment -- Composting -- Anaerobic Digestion -- Metal Recovery -- Microbial Biofuels -- Biomethanol -- Bioethanol -- Butanol -- Biodiesel -- Medical Biotechnology -- 4.4 Conclusions -- References -- 5: Applications of Microbes for Energy -- 5.1 Introduction -- 5.2 Microbes for Energy Applications -- 5.2.1 Microbes for Fuel Cells -- 5.2.2 Microbes for Hydrogen Production -- 5.2.3 Microbes for Methane Production -- 5.2.4 Microbes for Ethanol Production -- 5.2.5 Microbes for Biodiesel Production -- 5.2.6 Microbes for Electrosynthesis -- 5.2.7 Microbes for Energy Storage -- 5.3 Conclusion and Future Remarks -- References -- 6: Applications of Microbes in Electric Generation -- 6.1 Introduction -- 6.2 Different BFC Types -- 6.2.1 DET-BFC -- 6.2.2 MET-BFC -- 6.2.3 EBFC -- 6.2.4 MFC -- 6.3 Electrocatalytic Nanomaterials for EBFC -- 6.3.1 Carbon Materials -- 6.3.2 Metal Nanoparticles -- 6.3.3 Composite Materials -- 6.4 Electrocatalytic Nanomaterials for MFC -- 6.4.1 Electrocatalytic Nanomaterials for MFC Anode -- Carbon Nanomaterials -- Metal Nanomaterials -- Conductive Polymers -- 6.4.2 Electrocatalytic Nanomaterials for MFC Cathode. , Noble Metal-Based Materials -- Non-noble Metal-Based Materials -- 6.5 Summary and Prospect -- References -- 7: Application of Microbes in Household Products -- 7.1 Introduction -- 7.2 Household Products -- 7.2.1 Cleaning Product -- 7.2.2 Cosmeceutical -- 7.2.3 Textiles -- 7.2.4 Others -- 7.3 Benefits and Challenges -- 7.4 Conclusion -- References -- 8: Electricity Generation and Wastewater Treatment with Membrane-Less Microbial Fuel Cell -- 8.1 Introduction -- 8.2 Electricity Generation -- 8.2.1 Anode and Cathode Electrodes -- Cathode Electrode -- Anode Electrode -- 8.2.2 Effect of Operating Temperature -- 8.2.3 Effect of pH -- 8.2.4 Effect of Substrate Pretreatment -- 8.2.5 Effect of Reactor Design -- 8.2.6 Effect of Electrode Surface Area and Electrode Spacing -- 8.2.7 Effect of Substrate Conductivity -- 8.3 Water Treatment (Substrate) -- 8.4 Conclusion -- References -- 9: Microbes: Applications for Power Generation -- 9.1 Introduction -- 9.2 Reduction of the Environmental and Air Pollution -- 9.2.1 Natural Aerosols from Vegetation -- 9.2.2 Landfill Gas -- 9.2.3 Biogas -- Using Leachate of the Waste -- 9.2.4 Biodiesel -- 9.2.5 Bioethanol -- Using Celluloses -- Using Starch -- Using Sugar -- 9.2.6 Sewer -- 9.3 Energy Efficiency -- 9.3.1 Microorganisms -- 9.3.2 Microbial Fuel Cells -- Using Natural Fermentation -- Using Biomass -- Using Domestic Wastewater -- Using Industrial Wastewater -- Using Sewage -- Using Crop Residue -- Using Mud -- Using Biogas Slurry -- 9.3.3 Newer Microbial Fuel Cells -- Using Electronophore (Traditional) -- Using Biochar (Latest) -- 9.3.4 Biogas -- Using Sewage -- Using Animal Waste -- Using Animal Manure -- 9.3.5 Biohydrogen -- 9.4 Availability -- 9.4.1 Biomass -- 9.5 Clean Energy -- 9.5.1 Algae -- 9.5.2 Microbial Biophotovoltaic Cells -- Using Algae -- Using Cyanobacteria -- Using Plant Rhizodeposition. , 9.6 Sustainability -- 9.6.1 Biomass -- Crop Residue -- 9.6.2 Camphor -- 9.7 Conclusion -- 9.8 Future Approach -- References -- 10: Applications of Microbes in Food Industry -- 10.1 Introduction -- 10.2 Applications of Microorganisms in Food Industry -- 10.2.1 Baking Industry Applications -- 10.2.2 Alcohol and Beverage Industry Applications -- 10.2.3 Enzyme Production and Its Applications -- 10.2.4 Production of Amino Acids -- 10.2.5 Microbial Detergents as Food Stain Removers -- 10.2.6 Dairy Industry Applications -- 10.2.7 Pigment Production -- 10.2.8 Organic Acid Production -- 10.2.9 Aroma and Flavouring Agents Production -- 10.2.10 Miscellaneous Applications -- Xanthan Gum Production -- Ripening Process -- Food Grade Paper Production -- Single-Cell Protein -- Applications in Other Foods -- 10.3 Summary -- References -- 11: Applications of Microbes in Human Health -- 11.1 Introduction -- 11.2 Human Microbiome -- 11.3 Probiotics -- 11.4 Properties of Probiotics -- 11.5 Probiotics Mechanism of Action -- 11.6 Oral Probiotics -- 11.6.1 Probiotics in Preventing Dental Caries Progression -- 11.6.2 Probiotics in Prevention of Gingival Inflammation -- 11.6.3 Probiotics in Prevention of Periodontal Diseases -- 11.7 Probiotics in Halitosis -- 11.7.1 Probiotics in Oral Mucositis -- 11.7.2 Benefits of Probiotics in General Health -- 11.7.3 Anti-Inflammatory Property -- 11.8 Antimicrobial Properties -- 11.9 Antioxidant Properties -- 11.10 Anticancer Properties -- 11.10.1 Probiotics in Treatment of Upper Respiratory Tract Infections -- 11.10.2 Probiotics in Treatment of Urogenital Infections -- 11.10.3 Probiotics in Improvement of Intestinal Health -- 11.10.4 Probiotics in Treatment of Chemotherapy and Radiotherapy Induced Diarrhea -- 11.10.5 Probiotics in Treatment of Anemia -- 11.11 Treatment and Prevention of Obesity -- 11.12 Probiotics as Immunomodulator. , 11.13 Conclusion -- References -- 12: Applications of Microbes in Soil Health Maintenance for Agricultural Applications -- 12.1 Introduction -- 12.2 Microbial Sources -- 12.2.1 Microalgae and Cyanobacteria -- 12.2.2 Fungi -- 12.2.3 Bacteria -- 12.3 Applications of Microbes -- 12.3.1 Plant Growth Regulators -- 12.3.2 Volatile Organic Compounds (VOCs) -- 12.3.3 Biotic Elicitors -- 12.3.4 Bioremediation -- 12.3.5 Biocontrol -- 12.3.6 Different Types of Microbes -- 12.4 Healthy Soil and Eco-Friendly Environment -- 12.4.1 Biofertilizers -- 12.4.2 Biopesticides -- 12.4.3 Bioherbicides -- 12.4.4 Bioinsecticides -- 12.5 Microbiome and Sustainable Agriculture -- 12.5.1 Benefits of Mycorrhizal Fungi -- 12.5.2 Soil and Environmental Health -- 12.6 Conclusion -- References -- 13: Co-functional Activity of Microalgae: Biological Wastewater Treatment and Bio-fuel Production -- 13.1 Introduction -- 13.2 Wastewater Treatment Using Microalgae -- 13.2.1 Wastewater Composition -- 13.2.2 Nutrient Removal -- Influence of Additives in Wastewater on Nutrient Removal by Microalgae -- 13.2.3 Heavy Metal Removal -- 13.3 Microalgae Cultivation and Harvesting -- 13.3.1 Open Ponds -- 13.3.2 Closed System (Photobioreactor PBRs) -- 13.3.3 Hybrid System -- 13.3.4 Harvesting Techniques -- 13.4 Bio-refinery -- 13.5 Bio-fuel Production Using Microalgae -- 13.5.1 Thermochemical Conversion -- 13.5.2 Biochemical Conversion/Fermentation -- 13.5.3 Chemical Reaction/Transesterification -- 13.5.4 Direct Combustion -- 13.6 Sustainability of Energy from Microalgae -- 13.7 Conclusions -- References -- 14: Microalgae Application in Chemicals, Enzymes, and Bioactive Molecules -- 14.1 Introduction -- 14.2 Microalgae-Based Products -- 14.2.1 Chemical Products -- 14.2.2 Bioactive Molecules -- 14.3 Microalgae Enzymes -- 14.4 Industrial Applications of Microalgae. , 14.5 Conclusions and Future Perspectives.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Layer structure (Solids). ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (403 pages)
    Edition: 1st ed.
    ISBN: 9781119655206
    DDC: 620.11
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 2D Metal-Organic Frameworks -- 1.1 Introduction -- 1.2 Synthesis Approaches -- 1.2.1 Selection of Synthetic Raw Materials -- 1.2.2 Solvent Volatility Method -- 1.2.3 Diffusion Method -- 1.2.3.1 Gas Phase Diffusion -- 1.2.3.2 Liquid Phase Diffusion -- 1.2.4 Sol-Gel Method -- 1.2.5 Hydrothermal/Solvothermal Synthesis Method -- 1.2.6 Stripping Method -- 1.2.7 Microwave Synthesis Method -- 1.2.8 Self-Assembly -- 1.2.9 Special Interface Synthesis Method -- 1.2.10 Surfactant-Assisted Synthesis Method -- 1.2.11 Ultrasonic Synthesis -- 1.3 Structures, Properties, and Applications -- 1.3.1 Structure and Properties of MOFs -- 1.3.2 Application in Biomedicine -- 1.3.3 Application in Gas Storage -- 1.3.4 Application in Sensors -- 1.3.5 Application in Chemical Separation -- 1.3.6 Application in Catalysis -- 1.3.7 Application in Gas Adsorption -- 1.4 Summary and Outlook -- Acknowledgements -- References -- Chapter 2 2D Black Phosphorus -- 2.1 Introduction -- 2.2 The Research on Black Phosphorus -- 2.2.1 The Structure and Properties -- 2.2.1.1 The Structure of Black Phosphorus -- 2.2.1.2 The Properties of Black Phosphorus -- 2.2.2 Preparation Methods -- 2.2.2.1 Mechanical Exfoliation -- 2.2.2.2 Liquid-Phase Exfoliation -- 2.2.3 Antioxidant -- 2.2.3.1 Degradation Mechanism -- 2.2.3.2 Adding Protective Layer -- 2.2.3.3 Chemical Modification -- 2.2.3.4 Doping -- 2.3 Applications of Black Phosphorus -- 2.3.1 Electronic and Optoelectronic -- 2.3.1.1 Field-Effect Transistors -- 2.3.1.2 Photodetector -- 2.3.2 Energy Storage and Conversion -- 2.3.2.1 Catalysis -- 2.3.2.2 Batteries -- 2.3.2.3 Supercapacitor -- 2.3.3 Biomedical -- 2.4 Conclusion and Outlook -- Acknowledgements -- References -- Chapter 3 2D Metal Carbides -- 3.1 Introduction -- 3.2 Synthesis Approaches -- 3.2.1 Ti3C2 Synthesis. , 3.2.2 V2C Synthesis -- 3.2.3 Ti2C Synthesis -- 3.2.4 Mo2C Synthesis -- 3.3 Structures, Properties, and Applications -- 3.3.1 Structures and Properties of 2D Metal Carbides -- 3.3.1.1 Structures and Properties of Ti3C2 -- 3.3.1.2 Structural Properties of Ti2C -- 3.3.1.3 Structural Properties of Mo2C -- 3.3.1.4 Structural Properties of V2C -- 3.3.2 Carbide Materials in Energy Storage Applications -- 3.3.2.1 Ti3C2 -- 3.3.2.2 Ti2C -- 3.3.2.3 V2C -- 3.3.2.4 Mo2C -- 3.3.3 Metal Carbide Materials in Catalysis Applications -- 3.3.3.1 Ti3C2 -- 3.3.3.2 V2C -- 3.3.3.3 Mo2C -- 3.3.4 Metal Carbide Materials in Environmental Management Applications -- 3.3.4.1 Ti3C2 in Environmental Management Applications -- 3.3.4.2 Ti2C in Environmental Management Applications -- 3.3.4.3 V2C in Environmental Management Applications -- 3.3.4.4 Mo2C in Environmental Management Applications -- 3.3.5 Carbide Materials in Biomedicine Applications -- 3.3.5.1 Ti3C2 in Biomedicine Applications -- 3.3.5.2 Ti2C in Biomedicine Applications -- 3.3.5.3 V2C in Biomedicine Applications -- 3.3.5.4 Mo2C in Biomedicine Applications -- 3.3.6 Carbide Materials in Gas Sensing Applications -- 3.3.6.1 Ti3C2 in Gas Sensing Applications -- 3.3.6.2 Ti2C in Gas Sensing Applications -- 3.3.6.3 V2C in Gas Sensing Applications -- 3.3.6.4 Mo2C in Gas Sensing Applications -- 3.4 Summary and Outlook -- Acknowledgements -- References -- Chapter 4 2D Carbon Materials as Photocatalysts -- 4.1 Introduction -- 4.2 Carbon Nanostructured-Based Materials -- 4.2.1 Forms of Carbon -- 4.2.2 Synthesis of Carbon Nanostructured-Based Materials -- 4.3 Photo-Degradation of Organic Pollutants -- 4.3.1 Graphene, Graphene Oxide, Graphene Nitride (g-C3N4) -- 4.3.1.1 Graphene-Based Materials -- 4.3.1.2 Graphene Nitride (g-C3N4) -- 4.3.2 Carbon Dots (CDs) -- 4.3.3 Carbon Spheres (CSs). , 4.4 Carbon-Based Materials for Hydrogen Production -- 4.5 Carbon-Based Materials for CO2 Reduction -- References -- Chapter 5 Sensitivity Analysis of Surface Plasmon Resonance Biosensor Based on Heterostructure of 2D BlueP/MoS2 and MXene -- 5.1 Introduction -- 5.2 Proposed SPR Sensor, Design Considerations, and Modeling -- 5.2.1 SPR Sensor and Its Sensing Principle -- 5.2.2 Design Consideration -- 5.2.2.1 Layer 1: Prism for Light Coupling -- 5.2.2.2 Layer 2: Metal Layer -- 5.2.2.3 Layer 3: BlueP/MoS2 Layer -- 5.2.2.4 Layer 4: MXene (Ti3C2Tx) Layer as BRE for Biosensing -- 5.2.2.5 Layer 5: Sensing Medium (RI-1.33-1.335) -- 5.2.3 Proposed Sensor Modeling -- 5.3 Results Discussion -- 5.3.1 Role of Monolayer BlueP/MoS2 and MXene (Ti3C2Tx) and Its Comparison With Conventional SPR -- 5.3.2 Influence of Varying Heterostructure Layers for Proposed Design -- 5.3.3 Effect of Changing Prism Material and Metal on Performance of Proposed Design -- 5.4 Conclusion -- References -- Chapter 6 2D Perovskite Materials and Their Device Applications -- 6.1 Introduction -- 6.2 Structure -- 6.2.1 Crystal Structure -- 6.2.2 Electronic Structure of 2D Perovskites -- 6.2.3 Structure of Photovoltaic Cell -- 6.3 Discussion and Applications -- 6.4 Conclusion -- References -- Chapter 7 Introduction and Significant Parameters for Layered Materials -- 7.1 Graphene -- 7.2 Phosphorene -- orthorhombic rhombohedral Simple cubic -- semiconductor semimetal metal -- 7.3 Silicene -- 7.4 ZnO -- 7.5 Transition Metal Dichalcogenides (TMDCs) -- 7.6 Germanene and Stanene -- 7.7 Heterostructures -- References -- Chapter 8 Increment in Photocatalytic Activity of g-C3N4 Coupled Sulphides and Oxides for Environmental Remediation -- 8.1 Introduction -- 8.2 GCN Coupled Metal Sulphide Heterojunctions for Environment Remediation -- 8.2.1 GCN and MoS2-Based Photocatalysts. , 8.2.2 GCN and CdS-Based Heterojunctions -- 8.2.3 Some Other GCN Coupled Metal Sulphide Photocatalysts -- 8.3 GCN Coupled Metal Oxide Heterojunctions for Environment Remediation -- 8.3.1 GCN and MoO3-Based Heterojunctions -- 8.3.2 GCN and Fe2O3-Based Heterojunctions -- 8.3.3 Some Other GCN Coupled Metal Oxide Photocatalysts -- 8.4 Conclusions and Outlook -- References -- Chapter 9 2D Zeolites -- 9.1 Introduction -- 9.1.1 What is 2D Zeolite? -- 9.1.2 Advancement in Zeolites to 2D Zeolite -- 9.2 Synthetic Method -- 9.2.1 Bottom-Up Method -- 9.2.2 Top-Down Method -- 9.2.3 Support-Assisted Method -- 9.2.4 Post-Synthesis Modification of 2D Zeolites -- 9.3 Properties -- 9.4 Applications -- 9.4.1 Petro-Chemistry -- 9.4.2 Biomass Conversion -- 9.4.2.1 Pyrolysis of Solid Biomass -- 9.4.2.2 Condensation Reactions -- 9.4.2.3 Isomerization -- 9.4.2.4 Dehydration Reactions -- 9.4.3 Oxidation Reactions -- 9.4.4 Fine Chemical Synthesis -- 9.4.5 Organometallics -- 9.5 Conclusion -- References -- Chapter 10 2D Hollow Nanomaterials -- 10.1 Introduction -- 10.2 Structural Aspects of HNMs -- 10.3 Synthetic Approaches -- 10.3.1 Template-Based Strategies -- 10.3.1.1 Hard Templating -- 10.3.1.2 Soft Templating -- 10.3.2 Self-Templating Strategies -- 10.3.2.1 Surface Protected Etching -- 10.3.2.2 Ostwald Ripening -- 10.3.2.3 Kirkendall Effect -- 10.3.2.4 Galvanic Replacement -- 10.4 Medical Applications of HNMs -- 10.4.1 Imaging and Diagnosis Applications -- 10.4.2 Applications of Nanotube Arrays -- 10.4.2.1 Pharmacy and Medicine -- 10.4.2.2 Cancer Therapy -- 10.4.2.3 Immuno and Hyperthermia Therapy -- 10.4.2.4 Infection Therapy and Gene Therapy -- 10.4.3 Hollow Nanomaterials in Diagnostics and Therapeutics -- 10.4.4 Applications in Regenerative Medicine -- 10.4.5 Anti-Neurodegenerative Applications -- 10.4.6 Photothermal Therapy -- 10.4.7 Biosensors. , 10.5 Non-Medical Applications of HNMs -- 10.5.1 Catalytic Micro or Nanoreactors -- 10.5.2 Energy Storage -- 10.5.2.1 Lithium Ion Battery -- 10.5.2.2 Supercapacitor -- 10.5.3 Nanosensors -- 10.5.4 Wastewater Treatment -- 10.6 Toxicity of 2D HNMs -- 10.7 Future Challenges -- 10.8 Conclusion -- Acknowledgement -- References -- Chapter 11 2D Layered Double Hydroxides -- 11.1 Introduction -- 11.2 Structural Aspects -- 11.3 Synthesis of LDHs -- 11.3.1 Co-Precipitation Method -- 11.3.2 Urea Hydrolysis -- 11.3.3 Ion-Exchange Method -- 11.3.4 Reconstruction Method -- 11.3.5 Hydrothermal Method -- 11.3.6 Sol-Gel Method -- 11.4 Nonmedical Applications of LDH -- 11.4.1 Adsorbent -- 11.4.2 Catalyst -- 11.4.3 Sensors -- 11.4.4 Electrode -- 11.4.5 Polymer Additive -- 11.4.6 Anion Scavenger -- 11.4.7 Flame Retardant -- 11.5 Biomedical Applications -- 11.5.1 Biosensors -- 11.5.2 Scaffolds -- 11.5.3 Anti-Microbial Agents -- 11.5.4 Drug Delivery -- 11.5.5 Imaging -- 11.5.6 Protein Purification -- 11.5.7 Gene Delivery -- 11.6 Toxicity -- 11.7 Conclusion -- Acknowledgement -- References -- Chapter 12 Experimental Techniques for Layered Materials -- 12.1 Introduction -- 12.2 Methods for Synthesis of Graphene Layered Materials -- 12.3 Selection of a Suitable Metallic Substrate -- 12.4 Graphene Synthesis by HFTCVD -- 12.5 Graphene Transfer -- 12.6 Characterization Techniques -- 12.6.1 X-Ray Diffraction Technique -- d D k -- 12.6.2 Field Emission Scanning Electron Microscopy (FESEM) -- 12.6.3 Transmission Electron Microscopy (TEM) -- 12.6.4 Fourier Transform Infrared Radiation (FTIR) -- 12.6.5 UV-Visible Spectroscopy -- 12.6.6 Raman Spectroscopy -- 12.6.7 Low Energy Electron Microscopy (LEEM) -- 12.7 Potential Applications of Graphene and Derived Materials -- 12.8 Conclusion -- Acknowledgement -- References -- Chapter 13 Two-Dimensional Hexagonal Boron Nitride and Borophenes. , 13.1 Two-Dimensional Hexagonal Boron Nitride (2D h-BN): An Introduction.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Geochemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (208 pages)
    Edition: 1st ed.
    ISBN: 9781119710080
    DDC: 551.9
    Language: English
    Note: Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Toxic Geogenic Contaminants in Serpentinitic Geological Systems: Occurrence, Behavior, Exposure Pathways, and Human Health Risks -- 1.1 Introduction -- 1.2 Serpentinitic Geological Systems -- 1.2.1 Nature, Occurrence, and Geochemistry -- 1.2.2 Occurrence and Behavior of Toxic Contaminants -- 1.3 Human Exposure Pathways -- 1.3.1 Occupational Exposure -- 1.3.2 Non-Occupational Exposure Routes -- 1.4 Human Health Risks and Their Mitigation -- 1.4.1 Health Risks -- 1.4.2 Mitigating Human Exposure and Health Risks -- 1.5 Future Perspectives -- 1.6 Conclusions -- Acknowledgements -- References -- 2 Benefits of Geochemistry and Its Impact on Human Health -- 2.1 Introduction -- 2.2 General Overview of Geochemistry and Human Health -- 2.2.1 Types of Geochemistry -- 2.2.2 Some Beneficial Effect of Some Mineral With Health Benefits -- 2.2.3 Application of Geochemistry on Human Health -- 2.3 Conclusion and Recommendations -- References -- 3 Applications of Geochemistry in Livestock: Health and Nutritional Perspective -- 3.1 Introduction -- 3.2 General and Global Perspective About Geochemistry in Livestock -- 3.3 Types of Geochemistry and Their Numerous Benefits -- 3.3.1 Analytical Geochemistry -- 3.3.2 Isotope Geochemistry -- 3.3.3 Low Temperature Geochemistry -- 3.3.4 Organic and Petroleum Geochemistry -- 3.4 Application of Geochemistry in Livestock -- 3.5 Geochemistry and Animal Health -- 3.6 General Overview of Geochemistry in Livestock's Merits of Geochemistry/Essential Minerals in Livestocks -- 3.6.1 Specific Examples of Authors That Have Used Essential Minerals in Livestock -- 3.6.2 Livestock in Relation to Geominerals -- 3.6.3 Trace Minerals Parallel Importance in Livestock -- 3.6.4 Heavy Metals Impact Livestock -- 3.7 Conclusion and Recommendations. , References -- 4 Application in Geochemistry Toward the Achievement of a Sustainable Agricultural Science -- 4.1 Introduction -- 4.2 General Overview on the Utilization of Geochemistry and Their Wide Application on Agriculture -- 4.2.1 Classification -- 4.2.2 Chemical Composition of Rocks -- 4.2.3 Effect of Some Beneficial Minerals in Agriculture -- 4.2.4 Beneficial Mineral Nutrients That are Crucial to the Development of Plants -- 4.3 Role of Geochemistry in Agriculture -- 4.4 Geochemical Effects of Heavy Metals on Crops Health -- 4.5 Conclusion and Recommendations -- References -- 5 Geochemistry, Extent of Pollution, and Ecological Impact of Heavy Metal Pollutants in Soil -- 5.1 Introduction -- 5.2 Material and Methods -- 5.2.1 Review Process -- 5.2.2 Ecological Risk Index -- 5.3 Toxic Heavy Metal and Their Impact to the Ecosystems -- 5.3.1 Arsenic -- 5.3.2 Cadmium -- 5.3.3 Chromium -- 5.3.4 Copper -- 5.3.5 Lead -- 5.3.6 Nickel -- 5.3.7 Zinc -- 5.4 Metal Pollution in Soil Across the Globe -- 5.5 Ecological and Human Health Risk Impacts of Heavy Metals -- 5.6 Conclusion -- References -- 6 Isotope Geochemistry -- 6.1 Introduction -- 6.2 Basic Definitions -- 6.2.1 The Notation -- 6.2.2 The Fractionation Factor -- 6.2.3 Isotope Fractionation -- 6.2.4 Mass Dependent and Independent Fractionations -- 6.3 Application of Traditional Isotopes in Geochemistry -- 6.3.1 Geothermometer -- 6.3.2 Isotopes in Biological System -- 6.3.3 Isotopes in Archaeology -- 6.3.4 Isotopes in Fossils and the Earliest Life -- 6.3.5 Isotopes in Hydrothermal and Ore Deposits -- 6.4 Non-Traditional Isotopes in Geochemistry -- 6.4.1 Application in Tracing of Source -- 6.4.2 Application in Process Tracing -- 6.4.3 Biological Cycling -- 6.5 Conclusion -- References -- 7 Environmental Geochemistry -- 7.1 Introduction -- 7.2 Overview of the Environmental Geochemistry -- 7.3 Conclusions. , 7.4 Abbreviations -- Acknowledgment -- References -- 8 Medical Geochemistry -- 8.1 Introduction -- 8.2 The Evolution of Geochemistry -- 8.3 This Science has Expanded Considerably to Become Distinct Branches -- 8.3.1 Cosmochemistry -- 8.3.2 The Economic Importance of Geochemistry -- 8.3.3 Analytical Geochemistry -- 8.3.4 Geochemistry of Radioisotopes -- 8.3.5 Medical Geochemistry and Human Health -- 8.3.6 Environmental Health and Safety -- 8.4 Conclusion -- References -- 9 Inorganic Geochemistry -- 9.1 Introduction -- 9.2 Elements and the Earth -- 9.2.1 Iron -- 9.2.2 Oxygen -- 9.2.3 Silicon -- 9.2.4 Magnesium -- 9.3 Geological Minerals -- 9.3.1 Quartz -- 9.3.2 Feldspar -- 9.3.3 Amphibole -- 9.3.4 Pyroxene -- 9.3.5 Olivine -- 9.3.6 Clay Minerals -- 9.3.7 Kaolinite -- 9.3.8 Bentonite, Montmorillonite, Vermiculite, and Biotite -- 9.4 Characterization Techniques -- 9.4.1 Powder X-Ray Diffraction -- 9.4.2 X-Ray Fluorescence Spectra -- 9.4.3 X-Ray Photoelectron Spectra -- 9.4.4 Electron Probe Micro-Analysis -- 9.4.5 Inductively Coupled Plasma Spectrometry -- 9.4.6 Fourier Transform Infrared Spectroscopy -- 9.4.7 Scanning Electron Microscopy Analysis -- 9.4.8 Energy Dispersive X-Ray Analysis -- 9.5 Conclusion -- References -- 10 Introduction and Scope of Geochemistry -- 10.1 Introduction -- 10.1.1 Periodic Table and Electronic Configuration -- 10.2 Periodic Properties -- 10.2.1 Ionization Enthalpy -- 10.2.2 Electron Affinity -- 10.2.3 Electro-Negativity -- 10.3 Chemical Bonding -- 10.3.1 Ionic Bond -- 10.3.2 Covalent Bond -- 10.3.3 Metallic Bond -- 10.3.4 Hydrogen Bond -- 10.3.5 Van der Waals Forces -- 10.4 Geochemical Classification and Distribution of Elements -- 10.4.1 Lithophiles -- 10.4.2 Siderophiles -- 10.4.3 Chalcophiles -- 10.4.4 Atmophiles -- 10.4.5 Biophiles -- 10.5 Chemical Composition of the Earth -- 10.6 Classification of Earth's Layers. , 10.6.1 Based on Chemical Composition -- 10.6.2 Based on Physical Properties -- 10.7 Spheres of the Earth -- 10.7.1 Geosphere/Lithosphere -- 10.7.2 Hydrosphere -- 10.7.3 Biosphere -- 10.7.4 Atmosphere -- 10.7.5 Troposphere -- 10.7.6 Stratosphere -- 10.7.7 Mesosphere -- 10.7.8 Thermosphere and Ionosphere -- 10.7.9 Exosphere -- 10.8 Sub-Disciplines of Geochemistry -- 10.9 Scope of Geochemistry -- 10.10 Conclusion -- References -- Index -- EULA.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Polysaccharides-Industrial applications. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (800 pages)
    Edition: 1st ed.
    ISBN: 9781119711391
    Language: English
    Note: Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Natural Polysaccharides From Aloe vera L. Gel (Aloe barbadensis Miller): Processing Techniques and Analytical Methods -- 1.1 Introduction -- 1.1.1 Gel Composition from A. vera -- 1.2 Applications of A. vera Mucilaginous Gel or Fractions -- 1.3 Aloe vera Gel Processing -- 1.3.1 Obtaining Polysaccharide Fraction or Acemannan -- 1.4 Analytical Methods Applied -- 1.4.1 Total Carbohydrates, Oligosaccharides, Acemannan and Free Sugars -- 1.4.2 Analytical Techniques -- 1.4.2.1 Chromatography Analysis -- 1.4.2.2 Infrared Spectroscopy (IR) -- 1.4.2.3 Nuclear Magnetic Resonance Spectroscopy -- 1.4.2.4 Mass Spectrometry -- 1.4.2.5 Ultraviolet-Visible Spectroscopy -- 1.4.2.6 Comprehensive Microarray Polymer Profiling -- 1.5 Conclusion -- References -- 2 Cell Wall Polysaccharides -- 2.1 Introduction to Cell Wall -- 2.2 Plant Cell Wall Polysaccharides -- 2.2.1 Cellulose -- 2.2.2 Hemicellulose -- 2.2.2.1 Xyloglucan -- 2.2.2.2 Xylans -- 2.2.2.3 Mannans -- 2.2.3 Callose -- 2.2.4 Pectic Polysaccharides -- 2.2.4.1 Homogalacturonan (HG) -- 2.2.4.2 Arabinan -- 2.3 Algal Cell Wall Polysaccharides -- 2.3.1 Alginates -- 2.3.2 Sulfated Galactans -- 2.3.3 Fucoidans -- 2.4 Fungal Cell Wall Polysaccharides -- 2.4.1 Glucan -- 2.4.2 Chitin and Chitosan -- 2.5 Bacterial Cell Wall Polysaccharides -- 2.5.1 Peptidoglycan -- 2.5.2 Lipopolysaccharides -- References -- 3 Marine Polysaccharides: Properties and Applications -- 3.1 Introduction -- 3.2 Polysaccharide Origins -- 3.3 Properties -- 3.3.1 Cellulose -- 3.3.2 Chitosan -- 3.3.3 Alginate -- 3.3.4 Carrageenan -- 3.3.5 Agar -- 3.3.6 Porphyran -- 3.3.7 Fucoidan -- 3.3.8 Ulvan -- 3.3.9 Exopolysaccharides From Microalgae -- 3.4 Applications of Polysaccharides -- 3.4.1 Biomedical Applications -- 3.4.1.1 Cellulose -- 3.4.1.2 Chitosan. , 3.4.1.3 Alginate -- 3.4.2 Food Applications -- 3.4.2.1 Cellulose -- 3.4.2.2 Chitosan -- 3.4.2.3 Alginates -- 3.4.2.4 Carrageenan -- 3.4.2.5 Agar -- 3.4.3 Pharmaceutical and Nutraceutical Applications -- 3.4.3.1 Cellulose -- 3.4.3.2 Chitosan -- 3.4.3.3 Alginate -- 3.4.3.4 Carrageenan -- 3.4.3.5 Porphyran -- 3.4.3.6 Fucoidan -- 3.4.4 Agriculture -- 3.5 Conclusions -- References -- 4 Seaweed Polysaccharides: Structure, Extraction and Applications -- 4.1 Introduction -- 4.1.1 Agar -- 4.1.2 Carrageenan -- 4.1.3 Alginate (Alginic Acid, Algin) -- 4.1.4 Fucoidan -- 4.1.5 Laminaran -- 4.1.6 Ulvan -- 4.2 Conclusion -- References -- 5 Agars: Properties and Applications -- 5.1 History and Origin of Agar -- 5.1.1 Agarophytes Used in Agar Manufacturing -- 5.2 Physical Properties of Agar Producing Seaweeds -- 5.3 Agar Manufacturing -- 5.3.1 Types of Agar Manufacturing -- 5.3.1.1 Freeze-Thaw Method -- 5.3.1.2 Syneresis Method -- 5.4 Structure of Agar -- 5.5 Heterogeneity of Agar -- 5.6 Physico-Chemical Characteristics of Agar -- 5.7 Chemical Characteristics of Agar -- 5.8 Factors Influencing the Characteristics of Agar -- 5.8.1 Techniques to Analyze the Fine Chemical Structure of Agar -- 5.8.2 Synergies and Antagonisms of Agar Gels -- 5.9 Uses of Agar in Various Sectors -- 5.9.1 Applications of Agar in Food Industry -- 5.9.2 Application of Agar in Harvesting Insects and Worms -- 5.9.3 Vegetable Tissue Culture Formulations -- 5.9.4 Culture Media for Microbes -- 5.9.5 Industrial Applications of Agar -- 5.10 Conclusion and Discussion -- References -- 6 Biopolysaccharides: Properties and Applications -- 6.1 Structure and Classification of Biopolysaccharides -- 6.1.1 Structure -- 6.1.2 Classification -- 6.1.3 Structural Characterization Techniques -- 6.2 Uses and Applications of Biopolysaccharides -- 6.2.1 Functional Fibers -- 6.2.2 Biomedicine. , 6.2.2.1 Tissue Engineering -- 6.2.2.2 Wound Healing -- 6.2.2.3 Drug Loading and Delivery -- 6.2.2.4 Therapeutics -- 6.2.3 Cosmetics -- 6.2.4 Foods and Food Ingredients -- 6.2.5 Biofuels -- 6.2.6 Wastewater Treatment -- 6.2.7 Textiles -- 6.3 Conclusion -- References -- 7 Chitosan Derivatives: Properties and Applications -- 7.1 Introduction -- 7.2 Properties of Chitosan Derivatives -- 7.2.1 Physiochemical Properties -- 7.2.2 Functional Properties -- 7.2.3 Biological Properties of Chitosan -- 7.3 Applications of Chitosan Derivatives -- 7.3.1 Anticancer Agents -- 7.3.2 Bone Tissue Material Formation -- 7.3.3 Wound Healing, Tissue Regeneration and Antimicrobial Resistance -- 7.3.4 Drug Delivery -- 7.3.5 Chromatographic Separations -- 7.3.6 Waste Management -- 7.3.7 Food Industry -- 7.3.8 In Cosmetics -- 7.3.9 In Paint as Antifouling Coatings -- 7.4 Conclusions -- Acknowledgement -- References -- 8 Green Seaweed Polysaccharides Inventory of Nador Lagoon in North East Morocco -- 8.1 Introduction -- 8.2 Nador Lagoon: Situation and Characteristics -- 8.3 Seaweed -- 8.4 Polysaccharides in Seaweed -- 8.5 Algae Polysaccharides in Nador Lagoon's Seaweed -- 8.5.1 C. prolifera -- 8.5.1.1 Sulfated Galactans -- 8.5.2 U. rigida & -- E. intestinalis -- 8.5.2.1 Ulvan -- 8.5.3 C. adhaerens, C. bursa, C. tomentosum -- 8.5.3.1 Sulfated Arabinans -- 8.5.3.2 Sulfated Arabinogalactans -- 8.5.3.3 Mannans -- 8.6 Conclusion -- References -- 9 Salep Glucomannan: Properties and Applications -- 9.1 Introduction -- 9.2 Production -- 9.3 Composition and Physicochemical Structure -- 9.4 Rheological Properties -- 9.5 Purification and Deacetylation -- 9.6 Food Applications -- 9.6.1 Beverage -- 9.6.2 Ice Cream and Emulsion Stabilizing -- 9.6.3 Edible Film/Coating -- 9.6.4 Gelation -- 9.7 Health Benefits -- 9.8 Conclusions and Future Trends -- References. , 10 Exudate Tree Gums: Properties and Applications -- 10.1 Introduction -- 10.1.1 Gum Arabic -- 10.1.2 Gum Karaya -- 10.1.3 Gum Kondagogu -- 10.1.4 Gum Ghatti -- 10.1.5 Gum Tragacanth -- 10.1.6 Gum Olibanum -- 10.2 Nanobiotechnology Applications -- 10.3 Minor Tree Gums -- 10.4 Conclusions -- Acknowledgment -- References -- 11 Cellulose and its Derivatives: Properties and Applications -- 11.1 Introduction -- 11.2 Main Raw Materials -- 11.3 Composition and Chemical Structure of Lignocellulosic Materials -- 11.4 Cellulose: Chemical Backbone and Crystalline Formats -- 11.5 Cellulose Extraction -- 11.5.1 Mechanical Methods -- 11.5.2 Chemical Methods -- 11.6 Cellulose Products and its Derivatives -- 11.7 Main Applications -- 11.8 Conclusion -- References -- 12 Starch and its Derivatives: Properties and Applications -- 12.1 Introduction -- 12.2 Physicochemical and Functional Properties of Starch -- 12.2.1 Size, Morphology and Crystallinity of Starch Granules -- 12.2.2 Physical Properties due to Associated Lipids, Proteins and Phosphorus With Starch Granules -- 12.2.3 Solubility and Swelling Capacity of Starch -- 12.2.4 Gelatinization and Retrogradation of Starch -- 12.2.5 Birefringence and Glass Transition Temperature of Starch -- 12.2.6 Rheological and Thermal Properties of Starch -- 12.2.7 Transmittance and Opacity of Starch -- 12.2.8 Melt Processability of Starch -- 12.3 Modification of Starch -- 12.3.1 Physical Modification of Starch -- 12.3.2 Chemical Modification of Starch -- 12.3.3 Dual Modification of Starch -- 12.3.4 Enzymatic Modification of Starch -- 12.3.5 Genetic Modification of Starch -- 12.4 Application of Starch and its Derivatives -- 12.4.1 In Food Industry -- 12.4.2 In Paper Industry -- 12.4.3 Starch as Binders -- 12.4.4 In Detergent Products -- 12.4.5 As Biodegradable Thermoplastic Materials or Bioplastics. , 12.4.6 In Pharmaceutical and Cosmetic Industries -- 12.4.7 As Industrial Raw Materials -- 12.4.8 As Adsorbents for Environmental Applications -- 12.4.9 As Food Packaging Materials -- 12.4.10 In Drug Delivery -- 12.4.11 As Antimicrobial Films and Coatings -- 12.4.12 In Advanced Functional Materials -- 12.5 Conclusion -- References -- 13 Crystallization of Polysaccharides -- 13.1 Introduction -- 13.2 Principles of Crystallization of Polysaccharides -- 13.3 Techniques for Crystallinity Measurement -- 13.4 Crystallization Behavior of Polysaccharides -- 13.4.1 Cellulose -- 13.4.2 Chitosan and Chitin -- 13.4.3 Starch -- 13.5 Polymer/Polysaccharide Crystalline Nanocomposites -- 13.6 Conclusion -- References -- 14 Polysaccharides as Novel Materials for Tissue Engineering Applications -- 14.1 Introduction -- 14.2 Types of Scaffolds for Tissue Engineering -- 14.3 Biomaterials for Tissue Engineering -- 14.4 Polysaccharide-Based Scaffolds for Tissue Engineering -- 14.4.1 Alginate-Based Scaffolds -- 14.4.2 Chitosan-Based Scaffolds -- 14.4.3 Cellulose-Based Scaffolds -- 14.4.4 Dextran and Pullulan-Based Scaffolds -- 14.4.5 Starch-Based Scaffolds -- 14.4.6 Xanthan-Based Scaffolds -- 14.4.7 Glycosaminoglycans-Based Scaffolds -- 14.5 Current Challenges and Future Perspectives -- Acknowledgements -- References -- 15 Structure and Solubility of Polysaccharides -- 15.1 Introduction -- 15.2 Polysaccharide Structure and Solubility in Water -- 15.3 Solubility and Molecular Weight -- 15.4 Solubility and Branching -- 15.5 Polysaccharide Solutions -- 15.6 Conclusions -- Acknowledgments -- References -- 16 Polysaccharides: An Efficient Tool for Fabrication of Carbon Nanomaterials -- 16.1 Introduction -- 16.2 Aerogels -- 16.2.1 Plant and Bacterial Cellulose -- 16.2.2 Carbon Derived From Nanocrystalline Cellulose of Plant Origin. , 16.2.3 Carbon Aerogels Produced From Bacterial Cellulose.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...