GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Frontiers in Environmental Science, Frontiers Media SA, Vol. 10 ( 2022-10-5)
    Abstract: Space-based Earth observation (EO), in the form of long-term climate data records, has been crucial in the monitoring and quantification of slow changes in the climate system—from accumulating greenhouse gases (GHGs) in the atmosphere, increasing surface temperatures, and melting sea-ice, glaciers and ice sheets, to rising sea-level. In addition to documenting a changing climate, EO is needed for effective policy making, implementation and monitoring, and ultimately to measure progress and achievements towards the overarching goals of the United Nations Framework Convention on Climate Change (UNFCCC) Paris Agreement to combat climate change. The best approach for translating EO into actionable information for policymakers and other stakeholders is, however, far from clear. For example, climate change is now self-evident through increasingly intense and frequent extreme events—heatwaves, droughts, wildfires, and flooding—costing human lives and significant economic damage, even though single events do not constitute “climate”. EO can capture and visualize the impacts of such events in single images, and thus help quantify and ultimately manage them within the framework of the UNFCCC Paris Agreement, both at the national level (via the Enhanced Transparency Framework) and global level (via the Global Stocktake). We present a transdisciplinary perspective, across policy and science, and also theory and practice, that sheds light on the potential of EO to inform mitigation, including sinks and reservoirs of greenhouse gases, and adaptation, including loss and damage. Yet to be successful with this new mandate, EO science must undergo a radical overhaul: it must become more user-oriented, collaborative, and transdisciplinary; span the range from fiducial to contextual data; and embrace new technologies for data analysis (e.g., artificial intelligence). Only this will allow the creation of the knowledge base and actionable climate information needed to guide the UNFCCC Paris Agreement to a just and equitable success.
    Type of Medium: Online Resource
    ISSN: 2296-665X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2741535-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Public Health Vol. 11 ( 2023-1-19)
    In: Frontiers in Public Health, Frontiers Media SA, Vol. 11 ( 2023-1-19)
    Abstract: Air pollution is one of the leading causes for global deaths and understanding pollutant emission sources is key to successful mitigation policies. Air quality data in the urban, suburban, industrial, and rural areas (UA, SA, IA, and RA) of Jining, Shandong Province in China, were collected to compare the characteristics and associated health risks. The average concentrations of PM 2.5 , PM 10 , SO 2 , NO 2 , and CO show differences of −3.87, −16.67, −19.24, −15.74, and −8.37% between 2017 and 2018. On the contrary, O 3 concentrations increased by 4.50%. The four functional areas exhibited the same seasonal variations and diurnal patterns in air pollutants, with the highest exposure excess risks (ERs) resulting from O 3 . More frequent ER days occurred within the 25–30°C, but much larger ERs are found within the 0–5°C temperature range, attributed to higher O 3 pollution in summer and more severe PM pollution in winter. The premature deaths attributable to six air pollutants can be calculated in 2017 and 2018, respectively. Investigations on the potential source show that the ER of O 3 ( r of 0.86) had the tightest association with the total ER. The bivariate polar plots indicated that the highest health-based air quality index (HAQI) in IA influences the HAQI in UA and SA by pollution transport, and thus can be regarded as the major pollutant emission source in Jining. The above results indicate that urgent measures should be taken to reduce O 3 pollution taking into account the characteristics of the prevalent ozone formation regime, especially in IA in Jining.
    Type of Medium: Online Resource
    ISSN: 2296-2565
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2711781-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...