GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Forschungsbericht ; CBM Experiment ; Quantenchromodynamik ; Phasenumwandlung ; Nichtgleichgewicht
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (11 Seiten, 320,27 KB)
    Language: German
    Note: Förderkennzeichen BMBF 05P18VHFCA , Verbundnummer 01182238
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1432
    Keywords: Foraminifera ; Sequence dissimilarity ; LSU rRNA gene ; Phylogeny
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An unusually high divergence was observed in the ribosomal RNA genes of a free-living population of foraminifera belonging to the genusAmmonia. The sequences of a large-subunit (LSU) rDNA expansion segment D1 and flanking regions were obtained from 20 specimens namedAmmonia sp. 1 andAmmonia sp. 2. The sequence divergence between the two species averages 14%. Within each species it ranges from 0.2% to 7.1% inAmmonia sp. 1 and from 0.7% to 2.3% inAmmonia sp. 2. We did not find two specimens having identical sequences. Moreover, in opposition to the generally acaepted view, rDNA sequence variations were also found within a single individual. The variations among several rDNA copies in a single specimen ofAmmonia may reach up to 4.9%. Most of the observed variations result from multiplication of CA or TA serial repeats occurring in two particularly variable regions. For single base changes, C-T transitions are most frequently observed. We discuss the evolution of expansion segments and their use for phylogenetic studies.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1432
    Keywords: Key words: Planktonic foraminifera — Molecular phylogenetics — Rates of substitution — Ribosomal DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Planktonic foraminifera are marine protists, whose calcareous shells form oceanic sediments and are widely used for stratigraphic and paleoenvironmental analyses. The fossil record of planktonic foraminifera is compared here to their molecular phylogeny inferred from ribosomal DNA sequences. Eighteen partial SSU rDNA sequences from species representing all modern planktonic families (Globigerinidae, Hastigerinidae, Globorotaliidae, Candeinidae) were obtained and compared to seven sequences representing the major groups of benthic foraminifera. The phylogenetic analyses indicate a polyphyletic origin for the planktonic foraminifera. The Candeinidae, the Globorotaliidae, and the clade Globigerinidae + Hastigerinidae seem to have originated independently, at different epochs in the evolution of foraminifera. Inference of their relationships, however, is limited by substitution rates of heterogeneity. Rates of SSU rDNA evolution vary from 4.0 × 10−9 substitutions/site/year in the Globigerinidae to less than 1.0 × 10−9 substitutions/site/year in the Globorotaliidae. These variations may be related to different levels of adaptation to the planktonic mode of life. A clock-like evolution is observed among the Globigerinidae, for which molecular and paleontological data are congruent. Phylogeny of the Globorotaliidae is clearly biased by rapid rates of substitution in two species (G. truncatulinoides and G. menardii). Our study reveals differences in absolute rates of evolution at all taxonomic levels in planktonic foraminifera and demonstrates their effect on phylogenetic reconstructions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5192
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The taxonomic history of the species of Plagiorchis Lühe, 1899 occurring in European bats has been very confused because of high morphological similarity between different forms/species and the inadequate initial description of P. vespertilionis(Müller, 1780). As morphological data alone have not provided enough convincing arguments to solve the problem, the sequences from the nuclear rDNA ITS region (ITS1, 5.8S and ITS2) of three species of the P. vespertilionis group (P. vespertilionis, P. muelleri Tkach & Sharpilo, 1990 and P. koreanus Ogata, 1938) occurring in European bats were used to test the validity of these species and evaluate some of the morphological characters used for the species differentiation within this group. P. elegans from birds was used as the outgroup in the analysis. All three ingroup species were clearly distinguishable using ITS sequences. Among them, P. koreanus occupied a basal position, while P. vespertilionis and P. muelleri appeared as a cluster of two closely related, derived species. ITS sequences of the specimens obtained from different hosts and/or geographical areas did not exhibit any intraspecific variability. Morphological study of the material in collections revealed characters which enable the species of Plagiorchis from bats in Europe to be distinguished. Taking into account that the type-material of P. vespertilionis, described during the 18th Century, has been lost, for nomenclatural stability, a neotype is established and described. An amended description of the type-material of P. muelleri and keys for the determination of Plagiorchis spp. from European bats are presented.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Levin, L. A., Bett, B. J., Gates, A. R., Heimbach, P., Howe, B. M., Janssen, F., McCurdy, A., Ruhl, H. A., Snelgrove, P., Stocks, K., I., Bailey, D., Baumann-Pickering, S., Beaverson, C., Benfield, M. C., Booth, D. J., Carreiro-Silva, M., Colaco, A., Eble, M. C., Fowler, A. M., Gjerde, K. M., Jones, D. O. B., Katsumata, K., Kelley, D., Le Bris, N., Leonardi, A. P., Lejzerowicz, F., Macreadie, P., I., McLean, D., Meitz, F., Morato, T., Netburn, A., Pawlowski, J., Smith, C. R., Sun, S., Uchida, H., Vardaro, M. F., Venkatesan, R., & Weller, R. A. Global observing needs in the deep ocean. Frontiers in Marine Science, 6, (2019):241, doi: 10.3389/fmars.2019.00241.
    Description: The deep ocean below 200 m water depth is the least observed, but largest habitat on our planet by volume and area. Over 150 years of exploration has revealed that this dynamic system provides critical climate regulation, houses a wealth of energy, mineral, and biological resources, and represents a vast repository of biological diversity. A long history of deep-ocean exploration and observation led to the initial concept for the Deep-Ocean Observing Strategy (DOOS), under the auspices of the Global Ocean Observing System (GOOS). Here we discuss the scientific need for globally integrated deep-ocean observing, its status, and the key scientific questions and societal mandates driving observing requirements over the next decade. We consider the Essential Ocean Variables (EOVs) needed to address deep-ocean challenges within the physical, biogeochemical, and biological/ecosystem sciences according to the Framework for Ocean Observing (FOO), and map these onto scientific questions. Opportunities for new and expanded synergies among deep-ocean stakeholders are discussed, including academic-industry partnerships with the oil and gas, mining, cable and fishing industries, the ocean exploration and mapping community, and biodiversity conservation initiatives. Future deep-ocean observing will benefit from the greater integration across traditional disciplines and sectors, achieved through demonstration projects and facilitated reuse and repurposing of existing deep-sea data efforts. We highlight examples of existing and emerging deep-sea methods and technologies, noting key challenges associated with data volume, preservation, standardization, and accessibility. Emerging technologies relevant to deep-ocean sustainability and the blue economy include novel genomics approaches, imaging technologies, and ultra-deep hydrographic measurements. Capacity building will be necessary to integrate capabilities into programs and projects at a global scale. Progress can be facilitated by Open Science and Findable, Accessible, Interoperable, Reusable (FAIR) data principles and converge on agreed to data standards, practices, vocabularies, and registries. We envision expansion of the deep-ocean observing community to embrace the participation of academia, industry, NGOs, national governments, international governmental organizations, and the public at large in order to unlock critical knowledge contained in the deep ocean over coming decades, and to realize the mutual benefits of thoughtful deep-ocean observing for all elements of a sustainable ocean.
    Description: Preparation of this manuscript was supported by NNX16AJ87A (NASA) Consortium for Ocean Leadership, Sub-Award No. SA16-33. AC was supported by FCT-Investigador contract (IF/00029/2014/CP1230/CT0002). LL was supported by a NASA subaward from the Consortium for Ocean Leadership. AG and HR were supported by Horizon 2020, EU Project “EMSO Link” grant ID 731036. AG, BB, DJ, and HR contributions were supported by the UK Natural Environment Research Council Climate Linked Atlantic Section Science project (NE/R015953/1). JP was funded by the Swiss Network for International Studies, and the Swiss National Science Foundation (grant 31003A_179125). TM was supported by Program Investigador FCT (IF/01194/2013), IFCT Exploratory Project (IF/01194/2013/CP1199/CT0002), H2020 Atlas project (GA 678760), and the H2020 MERCES project (GA 689518). This is PMEL contribution number 4965.
    Keywords: Deep sea ; Ocean observation ; Blue economy ; Essential ocean variables ; Biodiversity ; Ocean sensors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-04-23
    Description: A large monothalamous foraminiferan, Toxisarcon taimyr sp. nov., has been isolated from the benthic samples from the Kara Sea inner shelf near the mouth of Yenisey river estuary, at a depth of 50–100 m. In its overall morphology, the new species closely resembles T. synsuicidica, one of the two species of Toxisarcon described to date. It possesses a large irregularly shaped cell body, covered by a thin layer of a fibrous organic coating. Numerous reticulopodia typically extend from all over the cell surface; the species is very motile and rapidly changes cell shape. Long and thick reticulopodial bundles form in the direction of movement. In the phylogenetic tree based on partial small-subunit ribosomal DNA (SSU rDNA) sequences, T. taimyr branches together with the two other known species of Toxisarcon within the clade C of monothalamous foraminifera.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...