GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (3)
  • Frontiers  (2)
Document type
Years
  • 1
    Publication Date: 2023-05-12
    Description: Freshwater in the Arctic Ocean plays an important role in the regional ocean circulation, sea ice, and global climate. From salinity observed by a variety of platforms, we are able, for the first time, to estimate a statistically reliable liquid freshwater trend from monthly gridded fields over all upper Arctic Ocean basins. From 1992 to 2012 this trend was 600±300 km**3/yr. A numerical model agrees very well with the observed freshwater changes. A decrease in salinity made up about two thirds of the freshwater trend and a thickening of the upper layer up to one third. The Arctic Ocean Oscillation index, a measure for the regional wind stress curl, correlated well with our freshwater time series. No clear relation to Arctic Oscillation or Arctic Dipole indices could be found. Following other observational studies, an increased Bering Strait freshwater import to the Arctic Ocean, a decreased Davis Strait export, and enhanced net sea ice melt could have played an important role in the freshwater trend we observed.
    Type: Dataset
    Format: 11 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gerland, Sebastian; Lind, Bjørn; Dowdall, Mark; Karcher, Michael J; Kolstad, Anne Kathrine (2003): 99Tc in seawater in the West Spitsbergen Current and adjacent areas. Journal of Environmental Radioactivity, 69(1-2), 119-127, https://doi.org/10.1016/S0265-931X(03)00090-0
    Publication Date: 2023-10-28
    Description: 99Tc levels were measured in seawater samples collected between 2000 and 2002 in the West Spitsbergen Current (WSC) and along the western coast of Svalbard or Spitzbergen and compared with available oceanographic 3-D modelling results for the late 1990s. Additional data from related regions are also presented in order to support the data interpretation. The seawater in the Arctic fjord Kongsfjorden on the western coast of Svalbard is influenced by the WSC, as shown by the 99Tc levels in surface water. By means of the WSC, 99Tc reaches the Eastern Fram Strait, where one branch of the WSC turns west into the East Greenland Current (EGC), and another branch continues northwards into the Arctic Ocean. Surface seawater collected in the central part of the WSC during a cruise on board the R/V "Polarstern" in the summer of 2000, showed higher levels of 99Tc than samples measured in Kongsfjorden in the spring of 2000. However, all levels measured in surface water are of the same order of magnitude. Data from sampling of deeper water in the WSC and EGC provide information pertaining to the lateral distribution of 99Tc. In all vertical profiling surveys (conducted in spring and summer), the highest levels of 99Tc were found in surface water. Comparison with oceanographic 3-D modelling indicates both significant seasonal variations in the lateral stratification of the WSC and variations with depth over shorter vertical distances. This information can be applied in sampling strategies, environmental monitoring, long-range transport of pollutants and physical oceanography.
    Keywords: Arctic Ocean; Area/locality; ARK-XVI/2; around Svalbard; CTD/Rosette; CTD-RO; Date/Time of event; DEPTH, water; Event label; Giant water sampler; GWS; Latitude of event; Longitude of event; Polarstern; PS57; PS57/173-1; PS57/173-3; PS57/197-1; PS57/264-2; PS57/264-3; SV00-1b; SV00-2a; SV00-4b; SV01-11b; SV01-1c; SV01-9b; SV02-MS1; Technetium-99; Technetium-99, standard deviation; Water sample; WS
    Type: Dataset
    Format: text/tab-separated-values, 48 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-06-13
    Description: This dataset contains hydroacoustic measurements collected by an autonomous ice-tethered bio-physical observatory during its drift across the Central Arctic Ocean from the end of MOSAiC in September 2020 to the next spring in May 2021. The measurements were performed by an Acoustic Zooplankton and Fish Profiler (AZFP, ASL) with factory calibrations. Data are provided as volume backscatter (Sv, in dB re 1 m⁻¹). We provide data for the frequencies 67, 125, 200 and 455 kHz. These files contain the quality-controlled raw data. The data were cleaned, processed and analysed in the paper Sea-ice decline makes zooplankton stay deeper for longer by Flores, Veyssiere et al. (submitted to Nature Cliimate Change), which contains a detailed description of the instrument and the measurement settings. The format can be readily ingested in the hydroacoustic data processing application EchoView.
    Keywords: 2020AZFP1; Acoustical Zoological Fish Profiler; Arctic_PASSION; Arctic Ocean; Arctic PASSION; AZFP; Binary Object; central Arctic Ocean; DATE/TIME; ECOLIGHT; Ecosystem functions controlled by sea ice and light in a changing Arctic; File content; FRAM; FRontiers in Arctic marine Monitoring; Hydroacoustic backscatter; LATITUDE; LONGITUDE; MIDO; Mosaic; MOSAiC; MOSAIC_PO; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Multidisciplinary Ice-based Distributed Observatory; Pan-Arctic observing System of Systems: Implementing Observations for societal Needs; Polarstern; PS122/5; PS122/5_58-163; vertical migration; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 8 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-15
    Description: Arctic sea ice is shifting from a year-round to a seasonal sea ice cover. This substantial transformation, via a reduction in Arctic sea ice extent and a thinning of its thickness, influences the amount of light entering the upper ocean. This in turn impacts under-ice algal growth and associated ecosystem dynamics. Field campaigns have provided valuable insights as to how snow and ice properties impact light penetration at fixed locations in the Arctic, but to understand the spatial variability in the under-ice light field there is a need to scale up to the pan-Arctic level. Combining information from satellites with state-of-the-art parameterizations is one means to achieve this. This study combines satellite and modeled data products to map under-ice light on a monthly time-scale from 2011 through 2018. Key limitations pertain to the availability of satellite-derived sea ice thickness, which for radar altimetry, is only available during the sea ice growth season. We clearly show that year-to-year variability in snow depth, along with the fraction of thin ice, plays a key role in how much light enters the Arctic Ocean. This is particularly significant in April, which in some regions, coincides with the beginning of the under-ice algal bloom, whereas we find that ice thickness is the main driver of under-ice light availability at the end of the melt season in October. The extension to the melt season due to a warmer Arctic means that snow accumulation has reduced, which is leading to positive trends in light transmission through snow. This, combined with a thinner ice cover, should lead to increased under-ice PAR also in the summer months.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-13
    Description: The Arctic is no longer a region dominated by thick multi-year ice (MYI), but by thinner, more dynamic, first-year-ice (FYI). This shift towards a seasonal ice cover has consequences for the under-ice light field, as sea-ice and its snow cover are a major factor influencing radiative transfer and thus, biological activity within- and under the ice. This work describes in situ measurements of light transmission through different types of sea-ice (MYI and FYI) performed during two expeditions to the Chukchi sea in August 2018 and 2019, as well as a simple characterisation of the biological state of the ice microbial system. Our analysis shows that, in late summer, two different states of FYI exist in this region: 1) FYI in an enhanced state of decay, and 2) robust FYI, more likely to survive the melt season. The two FYI types have different average ice thicknesses: 0.74 ± 0.07 m (N = 9) and 0.93 ± 0.11m (N = 9), different average values of transmittance: 0.15 ± 0.04 compared to 0.09 ± 0.02, and different ice extinction coefficients: 1.49 ± 0.28 and 1.12 ± 0.19 m -1. The measurements performed over MYI present different characteristics with a higher average ice thickness of 1.56 ± 0.12 m, lower transmittance (0.05 ± 0.01) with ice extinction coefficients of 1.24 ± 0.26 m-1 (N = 12). All ice types show consistently low salinity, chlorophyll a concentrations and nutrients, which may be linked to the timing of the measurements and the flushing of melt-water through the ice. With continued Arctic warming, the summer ice will continue to retreat, and the decayed variant of FYI, with a higher scattering of light, but a reduced thickness, leading to an overall higher light transmittance, may become a more relevant ice type. Our results suggest that in this scenario, more light would reach the ice interior and the upper-ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...