GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    The Company of Biologists
    In:  EPIC3Journal of Experimental Biology, The Company of Biologists, 225(18), pp. jeb244607-, ISSN: 0022-0949
    Publication Date: 2023-10-12
    Description: Atlantic herring (Clupea harengus), an ecologically and economically important species in the northern hemisphere, shows pronounced seasonal migratory behaviour. To follow distinctive migration patterns over hundreds of kilometers between feeding, overwintering and spawning grounds, they are probably guided by orientation mechanisms. We tested whether juvenile spring-spawning Atlantic herring, caught in the western Baltic, use a sun compass for orientation just before they start leaving their hatching area. Fish were randomly divided into two groups, one of them clock-shifted 6 h backwards, to investigate whether they shift their orientation direction accordingly. Individual fish were placed in a circular bowl and their orientation was tested multiple times with the sun as a sole visual orientational cue. Our results show for the first time that juvenile Atlantic herring use a time-compensated sun compass during their migration. Their swimming direction was impaired, but still present, even when the sky was very cloudy, indicating additional orientation capabilities.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Digestive system functionality of fish larvae relies on the onset of genetically pre-programmed and extrinsically influenced digestive functions. This study explored how algal supplementation (green-water) until 14 days post hatch (dph) and the ingestion of food [enriched rotifer (Brachionus plicatilis) paste] from 15 dph onward affects molecular maturation and functionality of European eel larval ingestion and digestion mechanisms. For this, we linked larval biometrics to expression of genes relating to appetite [ghrelin (ghrl), cholecystokinin (cck)], food intake [proopiomelanocortin (pomc)], digestion [trypsin (try), triglyceride lipase (tgl), amylase (amyl)], energy metabolism [ATP synthase F0 subunit 6 (atp6), cytochrome-c-oxidase 1 (cox1)], growth [insulin-like growth factor (igf1)] and thyroid metabolism [thyroid hormone receptors (thrαA, thrβB)]. Additionally, we estimated larval nutritional status via nucleic acid analysis during transition from endogenous and throughout the exogenous feeding stage. Results showed increased expression of ghrl and cck on 12 dph, marking the beginning of the first-feeding window, but no benefit of larviculture in green-water was observed. Moreover, expression of genes relating to protein (try) and lipid (tgl) hydrolysis revealed essential digestive processes occurring from 14 to 20 dph. On 16 dph, a molecular response to initiation of exogenous feeding was observed in the expression patterns of pomc, atp6, cox1, igf1, thrαA and thrβB. Additionally, we detected increased DNA contents, which coincided with increased RNA contents and greater body area, reflecting growth in feeding compared to non-feeding larvae. Thus, the here applied nutritional regime facilitated a short-term benefit, where feeding larvae were able to sustain growth and better condition than their non-feeding conspecifics. However, RNA:DNA ratios decreased from 12 dph onward, indicating a generally low larval nutritional condition, probably leading to the point-of-no-return and subsequent irreversible mortality due to unsuccessful utilization of exogenous feeding. In conclusion, this study molecularly identified the first-feeding window in European eel and revealed that exogenous feeding success occurs concurrently with the onset of a broad array of enzymes and hormones, which are known to regulate molecular processes in feeding physiology. This knowledge constitutes essential information to develop efficient larval feeding strategies and will hopefully provide a promising step toward sustainable aquaculture of European eel.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-06
    Description: Herring larvae were sampled during the lllLS in the ICES area IVa from 1990 to 1997. Larval growth was determined based on otolith microstructure analysis from larvae of 7-25mm standard length. The data were correlated to the North Atlantic Oscillation (NAO) and the intlow of Atlantic water (AW) at the same period. The study showed a strong correlation between positive NAO years with a higher inflow of AW and subsequently higher larval growth rates. which could be an indication of favorable growth conditions
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-01-06
    Description: The usefulness of multivariate morphometrics to distinguish between fed and starved fish larvae was tested on laboratory reared herring larvae (Clupea harengus ). Linear Discriminant Analysis was used to obtain a linear function which separates the two groups of larvae maximally. The calculations were based on twelve morphometric characters, taken individually by means of an image analysing system. A statistically significant separation of fed and starved larvae was obtained. The most important characters and the number of characters necessary for separation are outlined.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-06
    Description: One of the effects of fishing is a reduction in average age and size in exploited fish stocks, leading to an increasing proportion of recruit spawners in the stock. Current management practice assumes equal viability of offspring from first time spawners and from repeat spawners, despite the fact that that first time spawners often produce smaller eggs than older spawners. The aim of this EU-project is to follow offspring from families of first time spawning and older cod, reared under identical and semi-natural conditions in marine enclosures (mesocosms). The parental origin of the larvae is identified using microsatellite DNA methodology. The advantage of this approach, compared to traditional laboratory rearing, is that rearing conditions are close to natural conditions, and all larvae are reared in the same environment. This eliminates the tank-to-tank variability often observed in traditional rearing experiments. The fish are reared from hatching, through the larval and juvenile stages, until sexual maturity. Growth rates, survival and nutritional condition will be measured using methods such as RNA/DNA ratio and otolith micro increment analysis. The results will be related to parental origin and quality measures of the eggs. It is intended to incorporate the results into management models for improvement of fishery management strategies. In this paper we will focus on a description of the project
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-01-09
    Description: Growth rate has been shown to effect survival and recruitment of marine fishes. How growth rates in the field are affected by larval development and environmental variability is poorly understood. Recent growth rates of sprat larvae, a key species in the Baltic Marine ecosystem, were determined by converting RNA/DNA ratios determined from individual larvae into recent growth based on a laboratory calibrated RNA/DNA temperature growth model. Several factors (larval size, temperature and photoperiod) that may contribute to the observed variability in recent growth sampled in the spawning seasons 2002 through 2004 were analyzed with a variety of models. Best fit was found for the Generalized Additive Models (GAMs). Larval size (dry weight), photoperiod and temperature terms explained 29 % and 36 % of the variability observed in recent growth of sprat larvae in the Baltic Sea, respectively.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    ICES
    In:  [Paper] In: ICES Annual Science Conference 1989, 05.10.1989, Den Haag, Netherlands .
    Publication Date: 2017-01-06
    Description: To estimate the importance of starvation induced mortality for recruitment of marine fish larvae three distinct methods were applied to determine the nutritional condition of fish larvae in situ. In addition to highly sensitive fluorescence techniques for analysing RNA/DNA ratios and tryptic enzyme activities histological standard methods were used to compare the nutritional status of fish larvae of the genus Vinciguerria (Photichthyidae) caught in two ecologically different areas of the Indian Ocean: In the central Arabian Sea and on the continental shelf of Pakistan. A comparison of the results elaborated by the distinct methods shows a trend towards better nutritional conditions for fish larvae from the offshore region.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    ICES | Oxford Univ. Press
    In:  Journal du Conseil / Conseil Permanent International pour l'Exploration de la Mer, 43 . pp. 122-128.
    Publication Date: 2019-08-08
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Anthropogenic CO2 emissions cause a drop in seawater pH and shift the inorganic carbon speciation. Collectively, the term ocean acidification (OA) summarizes these changes. Few studies have examined OA effects on predatory plankton, e.g. Hydrozoa and fish larvae as well as their interaction in complex natural communities. Because Hydrozoa can seriously compete with and prey on other higher-level predators such as fish, changes in their abundances may have significant consequences for marine food webs and ecosystem services. To investigate the interaction between Hydrozoa and fish larvae influenced by OA, we enclosed a natural plankton community in Raunefjord, Norway, for 53 days in eight ≈ 58 m³ pelagic mesocosms. CO2 levels in four mesocosms were increased to ≈ 2000 µatm pCO2, whereas the other four served as untreated controls. We studied OA-induced changes at the top of the food web by following ≈2000 larvae of Atlantic herring (Clupea harengus) hatched inside each mesocosm during the first week of the experiment, and a Hydrozoa population that had already established inside the mesocosms. Under OA, we detected 20% higher abundance of hydromedusae staged jellyfish, but 25% lower biomass. At the same time, survival rates of Atlantic herring larvae were higher under OA (control pCO2: 0.1%, high pCO2: 1.7%) in the final phase of the study. These results indicate that a decrease in predation pressure shortly after hatch likely shaped higher herring larvae survival, when hydromedusae abundance was lower in the OA treatment compared to control conditions. We conclude that indirect food-web mediated OA effects drove the observed changes in the Hydrozoa – fish relationship, based on significant changes in the phyto-, micro-, and mesoplankton community under high pCO2. Ultimately, the observed immediate consequences of these changes for fish larvae survival and the balance of the Hydrozoa – fish larvae predator – prey relationship has important implications for the functioning of oceanic food webs.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Atlantic herring (Clupea harengus) has a complex population structure and displays a variety of reproductive strategies. Differences in reproductive strategies among herring populations are linked to their time of spawning, as well as to their reproductive investment which can be an indicator for migratory vs. stationary behavior. These differences are reflected in the number of oocytes (fecundity) and the size of the oocytes prior spawning. We studied potential mixing of herring with different reproductive strategies during the spring spawning season on a coastal spawning ground. It has been hypothesized that both spring and autumn spawning herring co-occur on this specific spawning ground. Therefore, we investigated the reproductive traits oocyte size, fecundity, fertilization success as well as length of the hatching larvae during the spring spawning season from February to April. We used a set of 11 single nucleotide polymorphism markers (SNPs), which are associated with spawning season, to genetically identify autumn and spring spawning herring. Reproductive traits were investigated separately within these genetically distinct spawning types. Furthermore, we used multivariate analyses to identify groups with potentially different reproductive strategies within the genetic spring spawners. Our results indicate that mixing between ripe spring and autumn spawners occurs on the spawning ground during spring, with ripe autumn spawners being generally smaller but having larger oocytes than spring spawners. Within spring spawners, we found large variability in reproductive traits. A following multivariate cluster analysis indicated two groups with different reproductive investment. Comparisons with other herring populations along the Norwegian coastline suggest that the high variability can be explained by the co-occurrence of groups with different reproductive investments potentially resulting from stationary or migratory behavior. Fertilization success and the length of the hatching larvae decreased with progression of the spawning season, with strong inter-individual variation, supporting our findings. Incorporating such complex population dynamics into management strategies of this species will be essential to build its future population resilience.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...