GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-11-17
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    GEOMAR Helmholtz-Zentrum für Ozeanforschung
    In:  GEOMAR Helmholtz-Zentrum für Ozeanforschung, Kiel, Germany, 5 pp.
    Publication Date: 2015-02-17
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-06
    Description: The sediment-water interface is an important site for material exchange in marine systems and harbor unique microbial habitats. The flux of nutrients, metals, and greenhouse gases at this interface may be severely dampened by the activity of microorganisms and abiotic redox processes, leading to the “benthic filter” concept. In this study, we investigate the spatial variability, mechanisms and quantitative importance of a microbially-dominated benthic filter for dissolved sulfide in the Eastern Gotland Basin (Baltic Sea) that is located along a dynamic redox gradient between 65 and 173 m water depth. In August-September 2013, high resolution (0.25 mm minimum) vertical microprofiles of redox-sensitive species were measured in surface sediments with solid-state gold-amalgam voltammetric microelectrodes. The highest sulfide consumption (2.73–3.38 mmol m−2 day−1) occurred within the top 5 mm in sediments beneath a pelagic hypoxic transition zone (HTZ, 80–120 m water depth) covered by conspicuous white bacterial mats of genus Beggiatoa. A distinct voltammetric signal for polysulfides, a transient sulfur oxidation intermediate, was consistently observed within the mats. In sediments under anoxic waters (〉140 m depth), signals for Fe(II) and aqueous FeS appeared below a subsurface maximum in dissolved sulfide, indicating a Fe(II) flux originating from older sediments presumably deposited during the freshwater Ancylus Lake that preceded the modern Baltic Sea. Our results point to a dynamic benthic sulfur cycling in Gotland Basin where benthic sulfide accumulation is moderated by microbial sulfide oxidation at the sediment surface and FeS precipitation in deeper sediment layers. Upscaling our fluxes to the Baltic Proper; we find that up to 70% of the sulfide flux (2281 kton yr−1) toward the sediment-seawater interface in the entire basin can be consumed at the microbial mats under the HTZ (80–120 m water depth) while only about 30% the sulfide flux effuses to the bottom waters (〉120 m depth). This newly described benthic filter for the Gotland Basin must play a major role in limiting the accumulation of sulfide in and around the deep basins of the Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-06
    Description: Redox-sensitive mobilization of nutrients from sediments strongly affects the eutrophic state of the central Baltic Sea; a region associated with the spread of hypoxia and almost permanently anoxic and sulfidic conditions in the deeper basins. Ventilation of these basins depends on renewal by inflow of water enriched in oxygen (O2) from the North Sea, occurring roughly once per decade. Benthic fluxes and water column distributions of dissolved inorganic nitrogen species, phosphate (PO43-), dissolved inorganic carbon (DIC), sulfide (HS-), and total oxygen uptake (TOU) were measured along a depth gradient in the Eastern Gotland Basin (EGB). Campaigns were conducted during euxinic conditions of the deep basin in Aug./Sept. 2013 and after two inflow events in July/Aug. 2015 and March 2016 when O2 concentrations in deep waters reached 60 μM. The intrusion of O2-rich North Sea water into the EGB led to an approximate 33 and 10% reduction of the seabed PO43- and ammonium (NH4+) release from deep basin sediments. Post-inflow, the deep basin sediment was rapidly colonized by HS- oxidizing bacteria tentatively assigned to the family Beggiatoaceae, and HS- release was completely suppressed. The presence of a hypoxic transition zone (HTZ) between 80 and 120 m water depth was confirmed not only for euxinic deep-water conditions during 2013 but also for post-inflow conditions. Because deep-water renewal did not ventilate the HTZ, where PO43- and NH4+ fluxes were highest, high seabed nutrient release there was relatively unchanged. Extrapolation of the in situ nutrient fluxes indicated that, overall, the reduction in PO43- and NH4+ release in response to deep-water renewal can be considered as minor, reducing the internal nutrient load by 2 and 12% only, respectively. Infrequent inflow events thus have a limited capacity to sustainably reduce internal nutrient loading in the EGB and mitigate eutrophication.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-06
    Description: At the end of 2014, a Major Baltic Inflow (MBI) brought oxygenated, salty water into the Baltic proper and reached the long-term anoxic Eastern Gotland Basin (EGB) by March 2015. In July 2015, we measured benthic fluxes of phosphorus (P), nitrogen (N) and silicon (Si) nutrients and dissolved inorganic carbon (DIC) in situ using an autonomous benthic lander at deep sites (170-210 m) in the EGB, where the bottom water oxygen concentration was 30-45 μM. The same in situ methodology was used to measure benthic fluxes at the same sites in 2008-2010, but then under anoxic conditions. The high efflux of phosphate under anoxic conditions became lower upon oxygenation, and turned into an influx in about 50% of the flux measurements. The C:P and N:P ratios of the benthic solute flux changed from clearly below the Redfield ratio (on average about 70 and 3-4, respectively) under anoxia to approaching or being well above the Redfield ratio upon oxygenation. These observations demonstrate retention of P in newly oxygenated sediments. We found no significant effect of oxygenation on the benthic ammonium, silicate and DIC flux. We also measured benthic denitrification, anammox, and dissimilatory nitrate reduction to ammonium (DNRA) rates at the same sites using isotope-pairing techniques. The bottom water of the long-term anoxic EGB contained less than 0.5 μM nitrate in 2008-2010, but the oxygenation event created bottom water nitrate concentrations of about 10 μM in July 2015 and the benthic flux of nitrate was consistently directed into the sediment. Nitrate reduction to both dinitrogen gas (denitrification) and ammonium (DNRA) was initiated in the newly oxygenated sediments, while anammox activity was negligible. We estimated the influence of this oxygenation event on the magnitudes of the integrated benthic P flux (the internal P load) and the fixed N removal through benthic and pelagic denitrification by comparing with a hypothetical scenario without the MBI. Our calculations suggest that the oxygenation triggered by the MBI in July 2015, extrapolated to the basin-wide scale of the Baltic proper, decreased the internal P load by 23% and increased the total (benthic plus pelagic) denitrification by 18%.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-01
    Description: Submarine mud volcanism represents an important. pathway for methane from deeper reservoirs to the surface, where it enters the benthic carbon cycle. To quantify overall methane release from the Captain Arutyunov mud volcano (CAMV) and to assess the contribution of macrobenthic seep organisms to the regulation of the benthic methane flux, we linked water column methane concentrations, seabed methane emission and pore water geochemistry to the spatial distribution of seep biota. Prominent organisms of the CAMV seep biota were 3 different species of frenulate tubeworms. Seabed methane emission ranged from 0.001 to 0.66 mmol m(-2) d(-1). Dense patches of tubeworms were associated with the lowest seabed methane emission. Elevated methane emission was associated with a sporadic distribution of tubeworms and the occurrence of numerous mud clasts. Despite the presence of a large subsurface methane reservoir, the estimated total methane release from CAMV was low (0.006 x 10(6) mol yr(-1)). In addition to direct methane consumption by Siboglinum poseidoni, the tubeworms likely contribute to the retention of methane carbon in the sediment by affecting bacterial communities in the proximity of the tubes. The siboglinids create new meso-scale habitats on the sediment Surface, increasing habitat heterogeneity and introducing niches for bacterial communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-05-28
    Description: The effect of methane released from decomposing surficial gas hydrates (SGH) on standing stocks and activities of the small-sized benthic biota (SSBB; i.e. bacteria, fungi, protozoa, and meiobenthic organisms) was studied at about 790 m water depth, at the Hydrate Ridge, Cascadia subduction zone. Presence of SGH and elevated sulfide concentrations in the sediment were indicated by extensive bacterial mats of Beggiatoa sp. and clam fields of the bivalve mollusc Calyptogena sp. Vertical and horizontal distribution patterns of the SSBB biomass were derived from DNA and total adenylate (TA) sediment assays. Potential bacterial exoenzymatic hydrolytic activity was measured using fluorescein-di-acetate (FDA) as substrate. Estimates of chemoautotrophic production of particulate organic carbon (POC.) were determined by 14CO2 uptake incubations. Inventories of chl a and pheopigments were determined as parameters of surface water primary produced POC input. Average SSBB biomass in clam field sediments integrated over the upper 10 cm (765.2 gC m-2, SD 190.1) was 3.6 times higher than in the adjacent control sites (213 gC m-2, SD 125). Average SSBB biomass in bacterial mat sediments, which were almost devoid of eukaryotic organisms 〉 31 µm, was 209 gC m-2 (SD 65). Significant correlations between FDA, DNA and plant pigments imply that productivity of the SSBB at SGH sites is only partially uncoupled from the primary production of the surface water. Areal estimates of autotrophic Corg production at control sites, bacterial mat sites and in clam field sites were 5.7, 59.7 and 190.0 mgC m-2 d-1, respectively. Based on different models predicting vertical POC fluxes from surface water primary production and water depth, these autotrophic POC productions account for 5 to 17% (controls), 35 to 68% (bacterial mats), and 63 to 87% (clam fields) of the bulk POC (sum of allochthonous POC input through the water column and sedimentary autochthonous autotrophic POC production) provided at the various sites. At SGH sites inventories of chl a and pheopigments, integrated over the upper 10 cm of the sediment, were half of that found at the control sites. This might be due to enhanced degradation of phytodetritally associated organic matter. The resulting low molecular weight organic carbon compounds might stimulate and fuel sulfate reduction, which is conducted in a microbial consortium with anaerobic methane consuming archaea. This syntrophic consortium might represent a prominent interface between gas hydrate derived carbon and allochthonous Corg flow. We infer that degradation kinetics of SGH is affected by, e.g., seasonally varying input of allochthonous organic matter.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 337 . pp. 27-37.
    Publication Date: 2018-06-01
    Description: The effect of methane seepage from sediments harbouring shallow gas hydrates on standing stocks and the distribution pattern of meiobenthic organisms, in particular Nematoda and Rotifera, was studied at about 800 m water depth at Hydrate Ridge, Cascadia subduction zone, off Oregon. The presence of shallow gas hydrates, buried only a few 10s of centimetres below the sediment surface, was indicated by extensive bacterial mats of chemosynthetic Beggiatoa sp. and clam fields of the bivalve mollusk Calyptogena spp. Mean abundances of meiobenthic organisms integrated over the upper 10 cm of the sediment were highest (1294 ind. 10 cm–2) at clam fields, closely followed by control sediments least affected by gas hydrates (1199 ind. 10 cm–2) and lowest in sediments covered with bacterial mats (762 ind. 10 cm–2). Average meiobenthic biomass was highest at the clam field site (262.2 µg C 10 cm–2), 210.4 µg C 10 cm–2 at the control site and very low in sediments covered with bacterial mats (61.4 µg C 10 cm–2). The dominant taxa of meiobenthic organisms at the investigated sites were nematodes and, unexpectedly, Rotifera that are almost unknown from the deep marine habitat. In terms of abundance, rotifera dominated the meiobenthic community in gas-hydrate-influenced sediments, while control sediments and deeper basins adjoined to Hydrate Ridge were dominated by nematodes. Nematodes were concentrated in the sediment surface at all sites, whereas rotifers were almost evenly distributed at all depths, with a slight preference for deeper sediment horizons. The horizontal as well as vertical distribution of nematodes and rotifers is likely to be determined by competition or predation, and by the high adaptive capability of rotifers to highly sulphidic and anoxic conditions. Estimates of meiobenthic carbon turnover in relation to the bulk organic carbon supply indicate that, in contrast to other meiobenthic communities in cold seep environments, the meiobenthos in the studied gas-hydrate-containing sediments do not benefit from the excess availability of organic carbon via the chemoautotrophic food web. This may be because, for most meiobenthic organisms (other than rotifers), tolerance mechanisms are overwhelmed by the deleterious environmental conditions of reduced oxygen availability and extremely high sulphide fluxes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-05-31
    Description: Living (Rose Bengal stained) foraminifera in gas-hydrate-influenced sediments at the Cascadia convergent margin were investigated. Foraminiferal assemblages from the southern Hydrate Ridge and neighboring basins were compared in terms of abundances, vertical distribution, diversity, and species composition. At Hydrate Ridge, the presence of shallow gas hydrates and increased porewater sulfide concentrations was indicated by extensive bacterial mats of Beggiatoa sp. and clam beds of the bivalve mollusk Calyptogena sp., generating different biological zones. Living foraminifera were found in all biological zones, in sediment layers down to 5 cm. They showed highly variable densities within all zones. The average abundance of benthic foraminifera at Hydrate Ridge differs from neighboring basins. Average species diversities are comparable between biological zones, while the average number of species increases from bacterial mats to clam fields and surrounding sediments. Foraminifera can be characterized by 5 principal component communities which explain 97.3% of the variance of the live assemblages at the southern Hydrate Ridge and neighboring basins. At Hydrate Ridge, 2 foraminiferal zones can be distinguished: (1) an Uvigerina peregrina community which characterizes sediments covered with bacterial mats and clam fields; (2) a ?Spiroplectammina biformis community in the surrounding non-seep sediments. Foraminiferal assemblages in the neighboring Western and Eastern Basin differ from the Hydrate Ridge stations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...