GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Elsevier BV
    In:  EPIC3Journal of Computational Physics, Elsevier BV, 474, pp. 111802-111802, ISSN: 0021-9991
    Publication Date: 2023-06-12
    Description: We present a Newton-Krylov solver for a viscous-plastic sea-ice model. This constitutive relation is commonly used in climate models to describe the material properties of sea ice. Due to the strong nonlinearity introduced by the material law in the momentum equation, the development of fast, robust and scalable solvers is still a substantial challenge. In this paper, we propose a novel primal-dual Newton linearization for the implicitly-in-time discretized momentum equation. Compared to existing methods, it converges faster and more robustly with respect to mesh refinement, and thus enables numerically converged sea-ice simulations at high resolutions. Combined with an algebraic multigrid-preconditioned Krylov method for the linearized systems, which contain strongly varying coefficients, the resulting solver scales well and can be used in parallel. We present experiments for two challenging test problems and study solver performance for problems with up to 8.4 million spatial unknowns.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-06-12
    Description: Many state-of-the-art coupled sea ice-ocean models use atmospheric and oceanic drag coefficients that are at best a function of the atmospheric stability but otherwise constant in time and space. Constant drag coefficients might lead to an incorrect representation of the ice-air and ice-ocean momentum exchange, since observations of turbulent fluxes imply high variability of drag coefficients. We compare three model runs, two with constant drag coefficients and one with drag coefficients varying as function of sea-ice characteristics. The computed drag coefficients range between 0.88 ×10−3 and 4.68 ×10−3 for the atmosphere, and between 1.28 ×10−3 and 13.68 ×10−3 for the ocean. They fall in the range of observed drag coefficients and illustrate the interplay of ice deformation and ice concentration in different seasons and regions. The introduction of variable drag coefficients improves the realism of the model simulation. In addition, using the average values of the variable drag coefficients improves simulations with constant drag coefficients. When drag coefficients depend on sea-ice characteristics, the average sea-ice drift speed in the Arctic basin increases from 6.22 cm s−1 to 6.64 cm s−1. This leads to a reduction of ice thickness in the entire Arctic and particularly in the Lincoln Sea with a mean value decreasing from 7.86 m to 6.62 m. Variable drag coefficients lead also to a deeper mixed layer in summer and to changes in surface salinity. Surface temperatures in the ocean are also affected by variable drag coefficients with differences of up to 0.06 °C in the East Siberian Sea. Small effects are visible in the ocean interior
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...