GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-11-15
    Description: Significant sediment–ocean chemical fluxes are produced by the expulsion of sedimentary fluids at continental margins. Although such fluxes could play a role in global geochemical cycles, few quantitative estimates of their global, or even regional, significance exist. We carried out a pore water geochemical study of fluids expelled from the Dvurechenskii mud volcano (DMV) in the Black Sea, with the aim of understanding the role played by mud volcanoes in Black Sea geochemical cycles. The DMV is presently expelling highly saline fluids particularly enriched in geochemically important species such as Li+ (1.5 mM), B (2.17 mM), Ba2+ (0.57 mM), Sr2+ (0.79 mM), I (0.4 mM) and dissolved inorganic nitrogen (DIN) (22 mM). A combination of geochemical indicators shows that this geochemical signature was acquired via organic matter and silicate alteration processes in the subsurface down to 3-km depth and near-surface gas hydrate formation. We used a simple transport model to estimate the benthic fluxes of these solutes at the DMV. Our results show that the DMV is expelling fluids at a rather low seepage rate (8–25 cm year−1) resulting in a total water flux of 9.4×10−5 km3 year−1. This gentle regime of fluid expulsion results in Li+, B, Sr2+, I and DIN fluxes between 3.8×104 and 2.1×106 mol year−1. Surface biogeochemical processes affect the benthic fluxes of Ba2+ such that the deep Ba2+ flux is completely consumed through the precipitation of authigenic barite (BaSO4) in surface sediments. The Black Sea I cycle is likely to be affected by mud volcanism, if the 50 known Black Sea mud volcanoes share the rather sluggish activity of the DMV. Mud volcano fluxes of Li, B, Sr and DIN, instead, are too small to affect Black Sea geochemical cycles. On a global scale, mud volcanism could play a role in the marine cycles of Li, B, Sr, I and DIN if current estimates of mud volcano abundance are correct.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-19
    Description: During the MARGASCH cruise M52/1 in 2001 with RV Meteor we sampled surface sediments from three stations in the crater of the Dvurechenskii mud volcano (DMV, located in the Sorokin Trough of the Black Sea) and one reference station situated 15 km to the northeast of the DMV. We analysed the pore water for sulphide, methane, alkalinity, sulphate, and chloride concentrations and determined the concentrations of particulate organic carbon, carbonate and sulphur in surface sediments. Rates of anaerobic oxidation of methane (AOM) were determined using a radiotracer (14CH4) incubation method. Numerical transport-reaction models were applied to derive the velocity of upward fluid flow through the quiescently dewatering DMV, to calculate rates of AOM in surface sediments, and to determine methane fluxes into the overlying water column. According to the model, AOM consumes 79% of the average methane flux from depth (8.9 · 10+ 6 mol a− 1), such that the resulting dissolved methane emission from the volcano into the overlying bottom water can be determined as 1.9 · 10+ 6 mol a− 1. If it is assumed that all submarine mud volcanoes (SMVs) in the Black Sea are at an activity level like the DMV, the resulting seepage represents less than 0.1% of the total methane flux into this anoxic marginal sea. The new data from the DMV and previously published studies indicate that an average SMV emits about 2.0 · 10+ 6 mol a− 1 into the ocean via quiescent dewatering. The global flux of dissolved methane from SMVs into the ocean is estimated to fall into the order of 10+ 10 mol a− 1. Additional methane fluxes arise during periods of active mud expulsion and gas bubbling occurring episodically at the DMV and other SMVs
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-08-22
    Description: Two newly developed coring devices, the Multi-Autoclave-Corer and the Dynamic Autoclave Piston Corer were deployed in shallow gas hydrate-bearing sediments in the northern Gulf of Mexico during research cruise SO174 (Oct–Nov 2003). For the first time, they enable the retrieval of near-surface sediment cores under ambient pressure. This enables the determination of in situ methane concentrations and amounts of gas hydrate in sediment depths where bottom water temperature and pressure changes most strongly influence gas/hydrate relationships. At seep sites of GC185 (Bush Hill) and the newly discovered sites at GC415, we determined the volume of low-weight hydrocarbons (C1 through C5) from nine pressurized cores via controlled degassing. The resulting in situ methane concentrations vary by two orders of magnitudes between 0.031 and 0.985 mol kg− 1 pore water below the zone of sulfate depletion. This includes dissolved, free, and hydrate-bound CH4. Combined with results from conventional cores, this establishes a variability of methane concentrations in close proximity to seep sites of five orders of magnitude. In total four out of nine pressure cores had CH4 concentrations above equilibrium with gas hydrates. Two of them contain gas hydrate volumes of 15% (GC185) and 18% (GC415) of pore space. The measurements prove that the highest methane concentrations are not necessarily related to the highest advection rates. Brine advection inhibits gas hydrate stability a few centimeters below the sediment surface at the depth of anaerobic oxidation of methane and thus inhibits the storage of enhanced methane volumes. Here, computerized tomography (CT) of the pressure cores detected small amounts of free gas. This finding has major implications for methane distribution, possible consumption, and escape into the bottom water in fluid flow systems related to halokinesis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...