GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-20
    Description: Changes in the Holocene interaction of the (i) cold/fresh East Greenland Current (EGC) and (ii) warm/saline Irminger Current (IC) in northern Denmark Strait have been reconstructed from benthic and planktic foraminifera assemblages, ice-rafted debris, grain-size analyses and quantitative X-ray diffraction. During the time from c. 10 600 to 8000 cal a BP, palaeoceanographic reconstructions reveal waning deglacial influence from the receding Greenland Ice Sheet and presence of a strong EGC caused low surface water productivity. From c. 8000 cal a BP, a predominant influence of Atlantic-sourced IC waters on subsurface water conditions became established in northern Denmark Strait, which accompanied low surface water productivity. Relatively warm surface and subsurface water conditions, i.e. reduced EGC and strong IC influence, are found from c. 6500 to 4500 cal a BP, representing Holocene optimum-like conditions. A mid- to late Holocene EGC strengthening caused increased stratification and formation of a distinct halocline. However, we recognize millennial-scale periods of reduced stratification by an enhanced influence of Atlantic-sourced IC Water on surface water conditions: (i) at c. 2500–1400 cal a BP the time of the Roman Warm Period and (ii) at c. 300 cal a BP the later part of the Little Ice Age. These periods of oceanic warming probably relate to changes in the Subpolar Gyre dynamics that led to enhanced entrainment of Atlantic-sourced IC Water into northern Denmark Strait.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Highlights • Previous age estimates of the Laacher See Eruptions (LSE) around 12,900 years are still diverging and imprecise. • The combination of dendrochronology, wood anatomy, and 14C measurements holds the potential to establish a precise LSE date. • An absolute calendric date of the LSE would improve the synchronization of European Late Glacial to Holocene archives. Abstract The precise date of the Laacher See eruption (LSE), central Europe’s largest Late Pleistocene volcanic event that occurred around 13,000 years ago, is still unknown. Here, we outline the potential of combined high-resolution dendrochronological, wood anatomical and radiocarbon (14C) measurements, to refine the age of this major Plinian eruption. Based on excavated, subfossil trees that were killed during the explosive LSE and buried under its pyroclastic deposits, we describe how a firm date of the eruption might be achieved, and how the resulting temporal precision would further advance our understanding of the environmental and societal impacts of this event. Moreover, we discuss the relevance of an accurate LSE date for improving the synchronization of European terrestrial and lacustrine Late Glacial to Holocene archives.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: There is a converging body of evidence supporting a measurable slowdown of the Atlantic Meridional Overturning Circulation (AMOC) as climate warms and Northern Hemisphere ice sheets inexorably shrink. Within this context, we assess the variability of the AMOC during the Holocene based on a marine sediment core retrieved from the deep northwest Atlantic, which sensitively recorded large‐scale deglacial transitions in deep water circulation. While there is a diffuse notion of Holocene variability in Labrador and Nordic Seas overturning, we report a largely invariable deep water circulation for the last ~11,000 years, even during the meltwater pulse associated with the 8.2‐ka event. Sensitivity tests along with high‐resolution 231Pa/230Th data constrain the duration and the magnitude of possible Holocene AMOC variations. The generally constant baseline during the Holocene suggests attenuated natural variability of the large‐scale AMOC on submillennial timescales and calls for compensating effects involving the upstream components of North Atlantic Deep Water.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...