GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (2)
  • Elsevier  (1)
Document type
Publisher
Years
  • 1
    Publication Date: 2019-09-23
    Description: We measured oxygen isotope compositions of 34 adakites, high-Mg andesites, and lavas suspected to contain abundant slab and sediment melts from the Western and Central Aleutians, the Andes, Panama, Fiji, Kamchatka, Setouchi (Japan), and the Cascades. This suite covers much of the diversity of arc lavas previously hypothesized to contain abundant ‘slab’ melts. Measured and calculated values of δ18O for olivine phenocrysts in these samples vary between 4.88‰ and 6.78‰, corresponding to calculated melt values of 6.36‰ to 8.17‰. Values of δ18O for these samples are correlated with other geochemical parameters having petrogenetic significance, including Sr/Y, La/Yb, 87Sr/86Sr, and 143Nd/144Nd. Archetypical adakites from Adak Island (Central Aleutian) and Cook Island (Andean Austral zone), previously interpreted to be nearly pure melts of basaltic and gabbroic rocks in subducting slabs, have values of δ18O slightly higher than those of normal mid-ocean-ridge basalts, and in oxygen isotope equilibrium with typical mantle peridotite (i.e., their subtle 18O enrichment reflects their Si-rich compositions and low liquidus temperatures, not 18O-rich sources). Other primitive adakites from Panama and Fiji show only subtle sub-per mil enrichments in the source. This finding appears to rule out the hypothesis that end-member adakites are unmodified partial melts of basaltic rocks and/or sediments in the top (upper 1–2 km) of the subducted slab, which typically have δ18O values of ca. 9–20‰, and also appears to rule out them being partial melts of hydrothermally altered gabbros from the slab interior, which typically have δ18O values of ca. 2–5‰. One explanation of this result is that adakites are mixtures of partial melts from several different parts of the slab, so that higher- and lower-δ18O components average out to have no net difference from average mantle. Alternatively, adakites might be initially generated with more extreme δ18O values, but undergo isotopic exchange with the mantle wedge before eruption. Finally, adakites might not be slab melts at all, and instead come from differentation and/or partial melting processes near the base of the arc crust in the over-riding plate. High-Mg andesites and Setouchi lavas are commonly higher in δ18O than equilibrium with the mantle, consistent with their containing variable amounts of partial melts of subducted sediments (as we conclude for Setouchi lavas), slab-derived aqueous fluid (as we conclude for the Cascades) and/or crustal contaminants from the over-riding plate (as we conclude for Kamchatka).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-11-27
    Description: More than 1·5 million people live in or near the Phlegrean Volcanic District (PVD) in southern Italy, which represents one of the most carefully studied volcanic hazard areas in the world. Throughout its history, the style of volcanic activity has varied greatly, from relatively quiescent lava flows to explosive phreatomagmatic eruptions. The goal of this study is to develop a more detailed understanding of the physical and chemical processes associated with the Solchiaro eruption in the PVD. The PVD includes three volcanic fields: the Campi Flegrei (CF) caldera and the volcanic islands of Ischia and Procida. The Solchiaro eruption on the island of Procida is one of the few primitive (less evolved) eruptions in the PVD and can provide information on the source of the more evolved magmas associated with this volcanic system. One of the more important chemical parameters that determine the style of volcanic eruptions is the volatile budget of the magma before and during eruption. Melt inclusions (MI) provide the most direct information on the volatile contents of the pre-eruptive melt in the source region for the PVD. The composition of the melt phase before eruption was determined by analyzing the major, minor and trace element and volatile contents of 109 MI in olivine from four samples of the Solchiaro eruption, representing different stratigraphic heights in the deposits and, therefore, different relative times of eruption. Olivine compositions vary from Fo 82 to Fo 88 , with one maximum value of Fo 90 . The compositions of the MI in olivine were corrected for post-entrapment crystallization (PEC) and for Fe loss by diffusion. Most (97 out of 109) of the MI studied are classified as ‘normal’ MI because they show chemical evolution trends consistent with that of bulk-rocks from the PVD. Two types of anomalous MI were also recognized based on their major and trace element compositions: (1) Sr-rich MI, and (2) enriched MI that are variably enriched in TiO 2 , K 2 O, P 2 O 5 , large ion lithophile elements, high field strength elements and rare earth elements relative to ‘normal’ MI. These MI probably originated from dissolution–reaction–mixing processes in the mush zone of the magma body. ‘Normal’ MI include both bubble-bearing and bubble-free (containing only glass ± trapped chromite) types. Bubble-free MI most closely record the pre-eruptive volatile content of the melt over a range of temporal and spatial conditions. The observed trends in CO 2 contents of MI versus crystallization indicators (e.g. Al 2 O 3 /CaO) support the interpretation that variations in the volatile contents of bubble-free MI reflect real variations in the volatile budget of the melt during the evolution of the magma. The correlation between CO 2 contents of MI and the relative stratigraphic position of each sample is consistent with eruption of a volatile-saturated magma that initially ascended through the crust from an original depth of at least 8 km. The magma ponded at 4–2 km depth prior to eruption and crystallization and the concomitant volatile exsolution from the saturated melt in the shallow chamber triggered the Solchiaro eruption. As the eruption proceeded, the Solchiaro magma continued to ascend through the crust to a final storage depth of about 1 km.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-10-25
    Description: Abundant multiphase solid inclusions (MSI) were found in garnet in an ultrahigh-pressure (UHP) paragneiss from the Kokchetav complex, Kazakhstan. The MSI are composed of mineral associations that include rock-forming and accessory minerals, which crystallized during exhumation. We present experimental and analytical protocols for how such inclusions can be homogenized to glass and analysed for major and trace elements. After homogenization we identified two types of glass. One type is present in garnet porphyroblasts in the melanocratic part of the sample and represents a high-pressure melt formed close to peak conditions of 〉45 kbar, 1000°C. These inclusions are characterized by high concentrations of light rare earth elements (LREE), Th and U. Extraction of these melts resulted in a pronounced depletion of the Kokchetav gneisses in those elements. Measured partition coefficients of large ion lithophile elements (LILE) between phengite inclusions and melt inclusions are D Rb = 1·9–2·5, D Ba = 1·1–6·9 and D Cs = 0·6–0·8, resulting in limited depletion of these elements during partial melting in the presence of phengite. The Nb concentration in melts (27 ppm) is about double that in the restite (15 ppm), indicating slightly incompatible behaviour during UHP anatexis, despite the presence of residual accessory rutile and phengite. A second type of inclusion occurs in garnet from the leucocratic part of the rock and represents a late-stage melt formed during exhumation at 650–750°C and crustal pressures. These inclusions are characterized by low LREE and Nb and high U. Zircon domains formed during high-temperature melting are characterized by high Ti content (100–300 ppm) and unfractionated Th/U (0·4–0·8), whereas the low-temperature domains display low Ti (10 ppm) and Th/U (0·08). The composition of UHP melts with moderate enrichment in LILE, no depletion in Nb and extreme enrichment in LREE and Th is remarkably different from the trace element signature of arc basalts, arguing against involvement of this type of melting in the generation of arc crust. The composition of the UHP melt inclusions is similar to that of melt inclusions from HP crustal xenoliths from Pamir and also to some shoshonites from Tibet. UHP anatexis, as observed in the Kokchetav massif, might be related to the formation of shoshonitic alkaline igneous rocks, which are common in collisional settings.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...