GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (4)
  • Oxford University Press  (1)
  • 1
    Publication Date: 2014-02-04
    Description: Atmospheric iron and underway sea-surface dissolved (〈0.2 μm) iron (DFe) concentrations were investigated along a north-south transect in the eastern Atlantic Ocean (27°N/16°W-19°S/5°E). Fe concentrations in aerosols and dry deposition fluxes of soluble Fe were at least two orders of magnitude higher in the Saharan dust plume than at the equator or at the extreme south of the transect. A weaker source of atmospheric Fe was also observed in the South Atlantic, possibly originating in southern Africa via the north-easterly outflow of the Angolan plume. Estimations of total atmospheric deposition fluxes (dry plus wet) of soluble Fe suggested that wet deposition dominated in the intertropical convergence zone, due to the very high amount of precipitation and to the fact that a substantial part of Fe was delivered in dissolved form. On the other hand, dry deposition dominated in the other regions of the transect (73-97), where rainfall rates were much lower. Underway sea-surface DFe concentrations ranged 0.02-1.1 nM. Such low values (0.02 nM) are reported for the first time in the Atlantic Ocean and may be (co)-limiting for primary production. A significant correlation (Spearman's rho = 0.862, p〈0.01) was observed between mean DFe concentrations and total atmospheric deposition fluxes, confirming the importance of atmospheric deposition on the iron cycle in the Atlantic. Residence time of DFe in the surface waters relative to atmospheric inputs were estimated in the northern part of our study area (17 ± 8 to 28 ± 16 d). These values confirmed the rapid removal of Fe from the surface waters, possibly by colloidal aggregation. © 2003 Elsevier Ltd. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-04
    Description: A shipboard analytical intercomparison of dissolved (〈0.2 μm) iron in the surface waters of the Atlantic Ocean was undertaken during October 2000. A single underway surface (1-2 m) seawater sampling and filtration protocol was used, in order to minimise differences from possible sample contamination. Over 200 samples (1/h) were collected over 12 days and analysed immediately using four different analytical methods, based on three variants of flow injection with luminol chemiluminescence (FI-CL) and cathodic stripping voltammetry (CSV). Dissolved iron concentrations varied between 0.02 and 1.61 nM during the intercomparison. On average, CSV Electroanalysis 12 (2000) 565 measured 0.08 nM higher iron concentrations than one FI-CL method Anal. Chim. Acta 361 (1998) 189, which measured 0.13 nM higher iron values than the other two Anal. Chem. 65 (1993) 1524; Anal. Chim. Acta 377 (1998) 113, Statistical analyses (paired two-tailed t-test) showed that each analytical method gave significantly different dissolved iron concentrations at the 95% confidence interval. These data however, represent a significant improvement over earlier intercomparison exercises for iron. The data have been evaluated with respect to accuracy and overall inter-laboratory replicate precision, which was generally better than the 95% confidence intervals reported for the NASS Certified Reference Materials. Systematic differences between analytical methods were probably due to the extraction of different physico-chemical forms of iron during preconcentration, either on the micro-column resin (in the FI methods) or with competing ligand equilibration (in the CSV method). Small systematic concentration differences may also have resulted from protocols used for quantification of the analytical blank and instrument calibration. © 2003 Elsevier B.V All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-08-22
    Description: An in situ iron enrichment experiment was carried out in the Southern Ocean Polar Frontal Zone and fertilized a patch of water within an eddy of the Antarctic Circumpolar Current (EisenEx, Nov. 2000). During the experiment, a physical speciation technique was used for iron analysis in order to understand the changes in iron distribution and size-fractionations, including soluble Fe (〈200 kDa), colloidal Fe (200 kDa–0.2 μm) and labile particle Fe (〉0.2 μm), throughout the development of the phytoplankton bloom. Prior to the first infusion of iron, dissolved (〈0.2 μm) iron concentrations in the ambient surface seawater were extremely low (0.06±0.015 nM) with colloidal iron being a minor fraction. For the iron addition, an acidified FeSO4 solution was released three times over a 23-day period to the eddy. High levels of dissolved iron concentrations (2.0±1.1 nM) were measured in the surface water until 4 days after the first iron infusion. After every iron infusion, when high iron concentrations were observed before storm events, there was a significant correlation between colloidal and dissolved iron concentrations ([Colloidal Fe]=0.7627[Dissolved Fe]+0.0519, R2=0.9346). These results indicate that a roughly constant proportion of colloidal vs. dissolved iron was observed after iron infusion (∼76%). Storm events caused a significant decrease in iron concentrations (〈0.61 nM in dissolved iron) and changed the proportions of the three iron size-fractions (soluble, colloidal and labile particle). The changes in each iron size-fraction indicate that colloidal iron was eliminated from surface mixed layer more easily than particulate and soluble fractions. Therefore, particle and soluble iron efficiently remain in the mixed layer, probably due to the presence of suspended particles and naturally dissolved organic ligands. Our data suggest that iron removal through colloidal aggregation during phytoplankton bloom should be considered in the oceanic iron cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-08-22
    Description: The speciation of strongly chelated iron during the 22-day course of an iron enrichment experiment in the Atlantic sector of the Southern Ocean deviates strongly from ambient natural waters. Three iron additions (ferrous sulfate solution) were conducted, resulting in elevated dissolved iron concentrations (Nishioka, J., Takeda, S., de Baar, H.J.W., Croot, P.L., Boye, M., Laan, P., Timmermans, K.R., in press. Changes in the concentration of iron in different size fractions during an iron enrichment experiment in the open Southern Ocean. Marine Chemistry.) and significant Fe(II) levels (Croot, P.L., Laan, P., Nishioka, J., Strass, V., Cisewski, B., Boye, M., Timmermans, K.R., Bellerby, R.G., Goldson, L., Nightingale, P., de Baar, H.J.W., in press. Spatial and Temporal distribution of Fe(II) and H2O2 during EisenEx, an open ocean mescoscale iron enrichment. Marine Chemistry.). Repeated vertical profiles for dissolved (filtrate 〈 0.2 μm) Fe(III)-binding ligands indicated a production of chelators in the upper water column induced by iron fertilizations. Abiotic processes (chemical reactions) and an inductive biologically mediated mechanism were the likely sources of the dissolved ligands which existed either as inorganic amorphous phases and/or as strong organic chelators. Discrete analysis on ultra-filtered samples (〈 200 kDa) suggested that the produced ligands would be principally colloidal in size (〉 200 kDa–〈 0.2 μm), as opposed to the soluble fraction (〈 200 kDa) which dominated prior to the iron infusions. Yet these colloidal ligands would exist in a more transient nature than soluble ligands which may have a longer residence time. The production of dissolved Fe-chelators was generally smaller than the overall increase in dissolved iron in the surface infused mixed layer, leaving a fraction (about 13–40%) of dissolved Fe not bound by these dissolved Fe-chelators. It is suggested that this fraction would be inorganic colloids. The unexpected persistence of such high inorganic colloids concentrations above inorganic Fe-solubility limits illustrates the peculiar features of the chemical iron cycling in these waters. Obviously, the artificial about hundred-fold increase of overall Fe levels by addition of dissolved inorganic Fe(II) ions yields a major disruption of the natural physical–chemical abundances and reactivity of Fe in seawater. Hence the ensuing responses of the plankton ecosystem, while in itself significant, are not necessarily representative for a natural enrichment, for example by dry or wet deposition of aeolian dust. Ultimately, the temporal changes of the Fe(III)-binding ligand and iron concentrations were dominated by the mixing events that occurred during EISENEX, with storms leading to more than an order of magnitude dilution of the dissolved ligands and iron concentrations. This had strongest impact on the colloidal size class (〉 200 kDa–〈 0.2 μm) where a dramatic decrease of both the colloidal ligand and the colloidal iron levels (Nishioka, J., Takeda, S., de Baar, H.J.W., Croot, P.L., Boye, M., Laan, P., Timmermans, K.R., in press. Changes in the concentration of iron in different size fractions during an iron enrichment experiment in the open Southern Ocean. Marine Chemistry.) was observed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-05-22
    Description: Background This was a post hoc analysis of patients with non-squamous histology from a phase III maintenance pemetrexed study in advanced non-small cell lung cancer (NSCLC). Patients and methods The six symptom items' [average symptom burden index (ASBI)] mean at baseline was calculated using the lung cancer symptom scale (LCSS). Low and high symptom burden (LSB, ASBI 〈 25; HSB, ASBI ≥ 25) and performance status (PS: 0, 1) subgroups were analyzed for treatment effect on progression-free survival (PFS) and overall survival (OS) using the Cox proportional hazard models adjusted for demographic/clinical factors. Results Significantly longer PFS and OS for pemetrexed versus placebo occurred in LSB patients [PFS: median 5.1 versus 2.4 months, hazard ratio (HR) 0.49, P 〈 0.0001; OS: median 17.5 versus 11.0 months, HR 0.63, P = 0.0012] and PS 0 patients (PFS: median 5.5 versus 1.7 months, HR 0.36, P 〈 0.0001; OS: median 17.7 versus 10.3 months, HR 0.54, P = 0.0019). Significantly longer PFS, but not OS, occurred in HSB patients (median 3.7 versus 2.8 months, HR 0.50, P = 0.0033) and PS 1 patients (median 4.4 versus 2.8 months, HR 0.60, P = 0.0002). Conclusions ASBI and PS are associated with survival for non-squamous NSCLC patients, suggesting that maintenance pemetrexed is useful for LSB or PS 0 patients following induction.
    Print ISSN: 0923-7534
    Electronic ISSN: 1569-8041
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...