GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (9)
  • Nature Publishing Group  (2)
  • Elsevier  (1)
  • 1
    Publication Date: 2021-02-08
    Description: We analyze the contribution of the Agulhas Current on the central water masses of the Benguela upwelling system (BUS) over the last decades in a high-resolution ocean simulation driven by atmospheric reanalysis. The BUS is an Eastern Boundary Upwelling System where upwelling of cold nutrient-rich water favors biomass growth. The two distinct subregions, North and South Benguela, differ in nutrient and oxygen properties of the upwelling water mass. Our analysis indicates that the contribution of Agulhas water to the upwelling is very strong in both subregions. Although the water masses feeding the upwelling have a common origin, their pathways are distinct in both regions. Whereas for the central waters of South Benguela the path is rather direct from where it is formed, the central waters of North Benguela takes a longer route through the equatorial current system. Not only the travel time from the Agulhas Current to the BUS is longer but also the central water mass is twice as old for the northern part when compared to the southern. Our analysis traces the pathways, history, and origin of the central water masses feeding upwelling in the BUS and emphasizes the direct impact of the Agulhas Current on the upwelling region. The variability of that link between the Indian Ocean and the South Atlantic is likely to change the nutrient and oxygen content, as well as temperature and salinity of the water masses in the upwelling region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Understanding the causes of the observed expansion of tropical ocean's oxygen minimum zones (OMZs) is hampered by large biases in the representation of oxygen distribution in climate models, pointing to incorrectly represented mechanisms. Here we assess the oxygen budget in a global biogeochemical circulation model, focusing on the Atlantic Ocean. While a coarse (0.5°) configuration displays the common bias of too large and too intense OMZs, the oxygen concentration in an eddying (0.1°) configuration is higher and closer to observations. This improvement is traced to a stronger oxygen supply by a more realistic representation of the equatorial and off-equatorial undercurrents, outweighing the concurrent increase in oxygen consumption associated with the stronger nutrient supply. The sensitivity of the eastern tropical Atlantic oxygen budget to the equatorial current intensity suggests that temporal changes in the eastward oxygen transport from the well-oxygenated western boundary region might partly explain variations in the OMZs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 119 (9). pp. 6221-6237.
    Publication Date: 2019-09-23
    Description: Previous studies have shown that ENSO's anomalous equatorial winds, including the observed southward shift of zonal winds that occurs around the event peak, can be reconstructed with the first two Empirical Orthogonal Functions (EOFs) of equatorial region wind stresses. Using a high-resolution ocean general circulation model, we investigate the effect of these two EOFs on changes in warm water volume (WWV), interhemispheric mass transports, and Indonesian Throughflow (ITF). Wind stress anomalies associated with the first EOF produce changes in WWV that are dynamically consistent with the conceptual recharge oscillator paradigm. The ITF is found to heavily damp these WWV changes, reducing their variance by half. Wind stress anomalies associated with the second EOF, which depicts the southward wind shift, are responsible for WWV changes that are of comparable magnitude to those driven by the first mode. The southward wind shift is also responsible for the majority of the observed interhemispheric upper ocean mass exchanges. These winds transfer mass between the Northern and the Southern Hemisphere during El Niño events. Whilst water is transferred in the opposite direction during La Niña events, the magnitude of this exchange is roughly half of that seen during El Niño events. Thus, the discharging of WWV during El Niño events is meridionally asymmetric, while the WWV recharging during a La Niña event is largely symmetric. The inclusion of the southward wind shift is also shown to allow ENSO to exchange mass with much higher latitudes than that allowed by the first EOF alone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Highlights: • Global mean sea level simulated in interannual CORE simulations. • Regional sea level patterns simulated in interannual CORE simulations. • Theoretical foundation for analysis of global mean sea level and regional patterns. Abstract: We provide an assessment of sea level simulated in a suite of global ocean-sea ice models using the interannual CORE atmospheric state to determine surface ocean boundary buoyancy and momentum fluxes. These CORE-II simulations are compared amongst themselves as well as to observation-based estimates. We focus on the final 15 years of the simulations (1993–2007), as this is a period where the CORE-II atmospheric state is well sampled, and it allows us to compare sea level related fields to both satellite and in situ analyses. The ensemble mean of the CORE-II simulations broadly agree with various global and regional observation-based analyses during this period, though with the global mean thermosteric sea level rise biased low relative to observation-based analyses. The simulations reveal a positive trend in dynamic sea level in the west Pacific and negative trend in the east, with this trend arising from wind shifts and regional changes in upper 700 m ocean heat content. The models also exhibit a thermosteric sea level rise in the subpolar North Atlantic associated with a transition around 1995/1996 of the North Atlantic Oscillation to its negative phase, and the advection of warm subtropical waters into the subpolar gyre. Sea level trends are predominantly associated with steric trends, with thermosteric effects generally far larger than halosteric effects, except in the Arctic and North Atlantic. There is a general anti-correlation between thermosteric and halosteric effects for much of the World Ocean, associated with density compensated changes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: The upper ocean circulation of the Pacific and Indian Oceans is connected through both the Indonesian Throughflow north of Australia and the Tasman leakage around its south. The relative importance of these two pathways is examined using virtual Lagrangian particles in a high-resolution nested ocean model. The unprecedented combination of a long integration time within an eddy-permitting ocean model simulation allows the first assessment of the interannual variability of these pathways in a realistic setting. The mean Indonesian Throughflow, as diagnosed by the particles, is 14.3 Sv, considerably higher than the diagnosed average Tasman leakage of 4.2 Sv. The time series of Indonesian Throughflow agrees well with the Eulerian transport through the major Indonesian Passages, validating the Lagrangian approach using transport-tagged particles. While the Indonesian Throughflow is mainly associated with upper ocean pathways, the Tasman leakage is concentrated in the 400–900 m depth range at subtropical latitudes. Over the effective period considered (1968–1994), no apparent relationship is found between the Tasman leakage and Indonesian Throughflow. However, the Indonesian Throughflow transport correlates with ENSO. During strong La Niñas, more water of Southern Hemisphere origin flows through Makassar, Moluccas, Ombai, and Timor Straits, but less through Moluccas Strait. In general, each strait responds differently to ENSO, highlighting the complex nature of the ENSO-ITF interaction.
    Type: Article , PeerReviewed
    Format: text
    Format: video
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-02-22
    Description: Observations show a significant intensification of the Southern Hemisphere westerlies, the prevailing winds between the latitudes of 30° and 60° S, over the past decades. A continuation of this intensification trend is projected by climate scenarios for the twenty-first century. The response of the Antarctic Circumpolar Current and the carbon sink in the Southern Ocean to changes in wind stress and surface buoyancy fluxes is under debate. Here we analyse the Argo network of profiling floats and historical oceanographic data to detect coherent hemispheric-scale warming and freshening trends that extend to depths of more than 1,000 m. The warming and freshening is partly related to changes in the properties of the water masses that make up the Antarctic Circumpolar Current, which are consistent with the anthropogenic changes in heat and freshwater fluxes suggested by climate models. However, we detect no increase in the tilt of the surfaces of equal density across the Antarctic Circumpolar Current, in contrast to coarse-resolution model studies. Our results imply that the transport in the Antarctic Circumpolar Current and meridional overturning in the Southern Ocean are insensitive to decadal changes in wind stress.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-06
    Description: Aim: The lives of juvenile leatherback turtles are amongst the most enigmatic of all marine mega-vertebrates. For these cryptic organisms, ocean models provide important insights into their dispersion from natal sites. Here, corroborated by fisheries bycatch data, we simulate spatio-temporal variation in hatchling dispersion patterns over five decades from the World's largest leatherback turtle nesting region. Location: Equatorial Central West Africa (3.5°N to −6°S) spanning the Gulf of Guinea in the North, Gabon and the Republic/Democratic Republic of the Congo in the South. Results: Due to dynamic oceanic conditions at these equatorial latitudes, dispersion scenarios differed significantly: (1) along the north to south gradient of the study region, (2) seasonally and (3) between years. From rookeries to the north of the equator, simulated hatchling retention rates within the Gulf of Guinea were very high (〉99%) after 6 months of drift, whilst south of the equator, retention rates were as low as c. 6% with the majority of simulated hatchlings dispersing west into the South Atlantic Ocean with the South Equatorial Current. Seasonal dispersion variability was driven by wind changes arising from the yearly north/southward migration of the intertropical convergence zone resulting in the increasing westerly dispersion of hatchlings throughout the hatching season. Annual variability in wind stress drove a long-term trend for decreased retention within the Gulf of Guinea and increased westerly dispersion into habitats in the South Atlantic Ocean. Main conclusions: Shifts in dispersion habitats arising from spatio-temporal oceanic variability expose hatchlings to different environments and threats that will influence important life history attributes such as juvenile growth/survival rates; anticipated to impact the population dynamics and size/age structure of populations into adulthood. The impacts of local and dynamic oceanic conditions thus require careful considerations, such as subregional management, when managing marine populations of conservation concern.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: A new estimate of Agulhas leakage transport is calculated using profiling floats and drifters. Since Richardson's seminal estimate of 15 Sv in 2007, the number of floats and drifters passing through the Agulhas Current has quadrupled. Within uncertainties we find the same leakage percentages as Richardson, with 34% of drifters leaking at the surface and 21% of floats leaking at 1,000 m depth. We find that the drifters tend to follow a northward leakage pathway via the Benguela Current compared to the northwestward leakage pathway of the floats along the Agulhas Ring corridor. We simulate the isobaric and profiling behavior of the floats and drifters using two high resolution models and two offline Lagrangian tracking tools, quantifying for the first time the sampling biases associated with the observations. We find that the isobaric bias cannot be robustly simulated but likely causes an underestimate of observed leakage by one or two Sverdrups. The profiling behavior of the floats causes no significant bias in the leakage. Fitting a simulated vertical leakage profile to the observed leakage percentages from the floats and drifters and using the mean Agulhas transport observed by a moored array at 34°S we find an improved Agulhas leakage transport of 21.3 Sv, with an estimated error of 4.7 Sv. Our new leakage transport is higher primarily because we account for leakage at depths down to 2,000 m, while Richardson considered only the top 1,000 m of the water column.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Advances in Modeling Earth Systems, 11 (8). pp. 2745-2767.
    Publication Date: 2022-01-31
    Description: Mesoscale dynamics of the Agulhas Current system determine the exchange between the Indian and Atlantic oceans, thereby influencing the global overturning circulation. Using a series of ocean model experiments compared to observations, we show that the representation of mesoscale eddies in the Agulhas ring path improves with increasing resolution of submesoscale flows. Simulated submesoscale dynamics are validated with time‐mean horizontal‐wavenumber spectra from satellite sea surface temperature measurements and mesoscale dynamics with spectra from sea surface height. While the Agulhas ring path in a nonsubmesoscale‐resolving (1/20)° configuration is associated with too less power spectral densities on all scales and too steep spectral slopes, the representation of the mesoscale dynamics improves when the diffusion and the dissipation of the model are reduced and some small‐scale features are resolved. Realistic power spectral densities over all scales are achieved when additionally the horizontal resolution is increased to (1/60)° and a larger portion of the submesoscale spectrum is resolved. Results of an eddy detection algorithm applied to the model outputs as well as to a gridded sea surface height satellite product show that in particular strong cyclones are much better represented when submesoscale flows are resolved by the model. The validation of the submesoscale dynamics with sea surface temperature spectra provides guidance for the choice of advection schemes and explicit diffusion and dissipation as well as for further subgrid‐scale parameterizations. For the Agulhas ring path, the use of upstream biased advection schemes without explicit diffusion and dissipation is found to be associated with realistically simulated submesoscales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: The transport of warm and salty Indian Ocean waters into the Atlantic Ocean—the Agulhas leakage—has a crucial role in the global oceanic circulation1 and thus the evolution of future climate. At present these waters provide the main source of heat and salt for the surface branch of the Atlantic meridional overturning circulation (MOC)2. There is evidence from past glacial-to-interglacial variations in foraminiferal assemblages3 and model studies4 that the amount of Agulhas leakage and its corresponding effect on the MOC has been subject to substantial change, potentially linked to latitudinal shifts in the Southern Hemisphere westerlies5. A progressive poleward migration of the westerlies has been observed during the past two to three decades and linked to anthropogenic forcing6, but because of the sparse observational records it has not been possible to determine whether there has been a concomitant response of Agulhas leakage. Here we present the results of a high-resolution ocean general circulation model7, 8 to show that the transport of Indian Ocean waters into the South Atlantic via the Agulhas leakage has increased during the past decades in response to the change in wind forcing. The increased leakage has contributed to the observed salinification9 of South Atlantic thermocline waters. Both model and historic measurements off South America suggest that the additional Indian Ocean waters have begun to invade the North Atlantic, with potential implications for the future evolution of the MOC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...