GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Hochschulschrift ; Angola ; Küste ; Meeresströmung
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (xiii, 135 Seiten) , Illustrationen, Diagramme, Karten
    DDC: 550
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Hochschulschrift ; Atlantischer Ozean ; Meeresströmung
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (127 Seiten) , Diagramme
    DDC: 500
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Kiel : Universitätsbibliothek Kiel
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (ix, 208 Seiten) , Illustrationen, Diagramme
    DDC: 551.462
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Kiel : Universitätsbibliothek Kiel
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (vi, 110, ix Seiten) , Illustrationen, Diagramme
    DDC: 551.462
    Language: English
    Note: Kumulatives Verfahren, enthält 3 Zeitschriftenaufsätze
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-23
    Description: A small-scale oceanic eddy, which was generated in autumn 2011 at the headland of Cap-Vert off the coast of Senegal, West Africa, and then propagated westward into the open North Atlantic Ocean, is studied by multi-sensor satellite and surface drifter data. The eddy was generated after a sudden increase of the trade winds causing an enhanced southward flow and upwelling at the coast of Senegal. After this wind burst event, an extremely nonlinear cyclonic eddy with a radius of about 10 to 20 km evolved downstream of Cap-Vert with Rossby number larger than one. Our analysis suggests that the eddy was generated by flow separation at the headland of Cap-Vert. The eddy was tracked on its way into the open North Atlantic Ocean from satellites over 31 days via its sea surface temperature and chlorophyll-a (CHL) signature and by a satellite-tracked surface drifter. The satellite images show that this small-scale eddy transported nutrients from the upwelling region westward into the oligotrophic North Atlantic thus giving rise to enhanced CHL concentration there. Maximum CHL concentration was encountered few days after vortex generation, which is consistent with a delayed plankton growth following nutrient supply into the euphotic zone within the eddy. Furthermore, the eddy was imaged by the synthetic aperture radar (SAR) onboard the Envisat satellite. It is shown that the radar signatures of cold eddies result from damping of short surface waves by biogenic surface films which arise from surface-active material secreted by the biota in the cold eddy as well as by the change of the stability of the air–sea interface. Highlights: ► Processes during the onset of coastal upwelling off West Africa ► Multi-sensor remote sensing and in-situ observations ► Highly-nonlinear, small scale eddy generation at Cap-Vert ► NRCS reduction in parts of the eddy due to biogenic surface films
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Interhemispheric Water Exchange in the Atlantic Ocean. , ed. by Goni, G. and Malanotte-Rizzoli, P. Elsevier Oceanography Series, 68 . Elsevier, Amsterdam, Netherlands, pp. 1-22.
    Publication Date: 2019-08-16
    Description: Observations in the central tropical Atlantic are used to investigate the circulation, the variability, and the near-equatorial meridional flow in this oceanic region. Meridional sections confirm that the southern band of the South Equatorial Current is a broad sluggish flow transporting subtropical water northwestward toward the western boundary. Variability in the South Equatorial Current is weak with an annual signal of about 2 cm/s. Recent equatorial flow observations agree with the previously proposed mean flow field, indicating that a permanent tropical circulation exists that is composed of several zonal current and countercurrent bands of small vertical and meridional extent compared to the subtropical gyres. However, wave phenomena superimpose on the mean flow field. On seasonal time scales the variability in the zonal flow field near the equator is dominated by the semiannual cycle in the central and eastern part while the annual cycle dominates in the western part. This seasonal variability is caused by the propagation of equatorial Rossby and Kelvin waves generated mainly by the zonal wind anomaly at the equator. Despite the observations of instantaneous cross-equatorial velocities and of floats crossing the equator it remains unclear whether there is a net cross-equatorial flow in the central tropical Atlantic in addition to cross-equatorial exchanges via thermocline convergence, upwelling and Ekman divergence. Three floats deployed at 200 m and 400 m depth either leave their deployment region at the equator to join the North Equatorial Undercurrent and progress further northward or in two cases have been deployed in the southern hemisphere and drift towards the equator.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part II: Topical Studies in Oceanography, 50 (12-13). pp. 2129-2141.
    Publication Date: 2016-10-05
    Description: An analysis of TOPEX/POSEIDON altimeter data and in situ current and temperature data obtained between April 1995 and October 1996 from a moored array shows strong intraseasonal fluctuations in the southwestern Arabian Sea, an oceanic region where the Great Whirl (GW), a predominantly wind-generated, very energetic anticyclone, is present during the Southwest Monsoon. Fluctuation periods between 30 and 50 days, up to 100 days during some years, are observed in the 8-year altimetric dataset, mostly during late summer and fall. These fluctuations are largest in a 1000 km-wide region off the Somali, Omani and Yemeni coasts north of 5°N, suggesting a local generation mechanism. The in situ data at different moorings show strong and coherent fluctuations that are characterized by southwestward phase propagation and northward energy propagation. Their periods range from 30 to 60 days and increase steadily from July 1995 to January 1996. In the first stage, these periods are at and below the cut-off period of freely propagating, first baroclinic mode Rossby waves, but approach this theoretical limit later in the year. Instabilities of the flow in the transition region between the Southern Gyre and the GW are likely sources of these fluctuations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 124 . pp. 103-125.
    Publication Date: 2021-05-18
    Description: Highlights: • Analysis of hydrographic and current observations (1989–2014) in the western equatorial Atlantic. • Lower NADW and lighter AABW form an interactive transition layer in the northern Brazil Basin. • Proof of long-term abyssal warming on isobars in the western tropical Atlantic. • Warming of densest AABW is mainly caused by descent of isopycnal surfaces and volume loss of dense water masses. • Changes on isopycnal surfaces show warming in the 1990s and cooling in the 2000s. Abstract: The flow of North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) contributes to the Atlantic meridional overturning circulation. Changes in the associated water mass formation might impact the deep ocean's capacity to take up anthropogenic CO2 while a warming of the deep ocean significantly contributes to global sea level rise. Here we compile historic and recent shipboard measurements of hydrography and velocity to provide a comprehensive view of water mass distribution, pathways, along-path transformation and long-term temperature changes of NADW and AABW in the western South and Equatorial Atlantic. We confirm previous results which show that the northwest corner of the Brazil Basin represents a splitting point for the southward/northward flow of NADW/AABW. The available measurements sample water mass transformation along the two major routes for deep and bottom waters in the tropical to South Atlantic – along the deep western boundary and eastward, parallel to the equator - as well as the hot-spots of extensive mixing. We find lower NADW and lighter AABW to form a highly interactive transition layer in the northern Brazil Basin. The AABW north of 5 °S is relatively homogeneous with only lighter AABW being able to pass through the Equatorial Channel (EQCH) into the North Atlantic. Spanning a period of 26 years, our data also allow an estimation of long-term temperature trends in abyssal waters. We find a warming of 2.5 ± 0.7∙10−3 °C yr−1 of the waters in the northern Brazil Basin at temperatures colder than 0.6 °C throughout the period 1989–2014 and can relate this warming to a thinning of the dense AABW layer. Whereas isopycnal heave is the dominant effect which defines the vertical distribution of temperature trends on isobars, we also find temperature changes on isopycnals in the lower NADW and AABW layers. There temperatures on isopycnals exhibit decadal variations with warming in the 1990s and cooling in the 2000s - the contributions to the trends on isobars range from about 50% in the lighter AABW layers in the EQCH up to a maximum of 80% in the transition layer the lower NADW and lighter AABW form in the northern Brazil Basin.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Ocean Circulation and Climate: A 21st Century Perspective. , ed. by Siedler, G., Griffies, S. M., Gould, J. and Church, J. A. Elsevier, Amsterdam, Netherlands, pp. 385-412. ISBN 978-0-12-391851-2
    Publication Date: 2017-03-22
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 52 . pp. 221-240.
    Publication Date: 2016-11-01
    Description: The upper ocean large-scale circulation of the western tropical Atlantic from 11.5°S to the Caribbean in November and December 2000 is investigated from a new type of shipboard ADCP able to measure accurate velocities to 600 m depth, combined with lowered ADCP measurements. Satellite data and numerical model output complement the shipboard measurements to better describe the large-scale circulation. In November 2000 the North Brazil Undercurrent (NBUC) was strongly intensified between 11 and 5°S by inflow from the east, hence the NBUC was formed further to the north than in the mean. The NBUC was transporting 23.1 Sv northward at 5°S, slightly less than the mean of six cruises (Geophysical Research Letters (2002) 29 (7) 1840). At 35°W the North Brazil Current (NBC) transported 29.4 Sv westward, less than the mean of 13 cruises (Geophysical Research Letters (2003) 30 (7) 1349). A strong retroflection ring had just pinched off the NBC retroflection according to the satellite information. The inflow into the Caribbean south of 16.5°N originated in part of a leakage from the NBC retroflection zone and in part from the North Equatorial Current. A thermocline intensified ring with a transport of about 30 Sv was located off Guadeloupe carrying South Atlantic Central Water towards the north. Observed deviations of the November/December 2000 flow field from the November long-term mean flow field were related to an enhanced Intertropical Convergence Zone (ITCZ) associated with an increased North Equatorial Countercurrent (NECC), as well as to boundary current rings and Rossby waves with zonal wavelength of the order of 1000 km. At 44°W the presence of a Rossby wave associated with an anticyclonic circulation led to a strongly enhanced NBC of 65.0 Sv as well as to a combined NECC and Equatorial Undercurrent transport of 52.4 Sv, much stronger than during earlier cruises. While the 1/3°-FLAME model is unable to reproduce details of the vertical distribution of the observed horizontal flow at 44 °W for November 2000 as well as the horizontal distribution of some of the observed permanent current bands, a climatological simulation with the 1/12°-FLAME agrees much better with the observations and provides information on the spreading path between the sections. E.g., the interpretation that the widening in the Antarctic Intermediate Water layer of the westward flowing NBC at 44°W in November was caused by water from the Equatorial Intermediate Current was further supported by the model results
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...